
124 COMMUNICATIONS OF THE ACM | NOVEMBER 2018 | VOL. 61 | NO. 11

contributed articles

we still regularly make mistakes in our
programs and spend a large part of our
development effort trying to fix them.

Moreover, nowadays, failures can
occur nondeterministically in nano-
second time spans within computer
systems consisting of thousands of
processors spanning the entire planet
running software code where size is
measured in millions of lines. Failures
can also be frighteningly expensive,
costing human lives, bringing down
entire industries, and destroying valu-
able property.22 Thankfully, debug-
ging technology has advanced over the
years, allowing software developers
to pinpoint and fix faults in ever more
complex systems.

One may reasonably wonder how
debugging is actually performed in
practice. Three recent publications
have shed light on a picture full of con-
trasts. A common theme is that the
practice and problems of debugging
have not markedly changed over the
past 20 years. Michael Perscheid and
colleagues at the SAP Innovation Cen-
ter and the Hasso Plattner Institute in
Potsdam, Germany, examined the de-
bugging practices of professional soft-
ware developers and complemented
the results with an online study.27 They
found developers are not trained in
debugging, spend 20% to 40% of their
work time in it, structure their debug-
ging process following a simplified
scientific method (see Figure 1), are
proficient in using symbolic debug-
gers, regularly debug by adding print
statements, are unfamiliar with back-

THE COMPUTING PIONEER Maurice Wilkes famously
described his 1949 encounter with debugging like this:
“As soon as we started programming, [...] we found to
our surprise that it wasn’t as easy to get programs right
as we had thought it would be. [...] Debugging had to
be discovered. I can remember the exact instant [...]
when I realized that a large part of my life from then
on was going to be spent in finding mistakes in my
own programs.”37

Seven decades later, modern computers are
approximately one million times faster and also
have one million times more memory than Wilkes’s
Electronic Delay Storage Automatic Calculator, or
EDSAC, an early stored-program computer using
mercury delay lines. However, in terms of bugs and
debugging not much has changed. As developers,

Modern
Debugging:
The Art of
Finding a Needle
in a Haystack

DOI:10.1145/3186278

Systematic use of proven debugging
approaches and tools lets programmers
address even apparently intractable bugs.

BY DIOMIDIS SPINELLIS

 key insights
˽˽ Targeted software-development process

improvements can aid debugging even in
cases where their wholesale adoption is
impractical.

˽˽ Debugging benefits from the widespread
availability of code, data, and Q&A
forums, and programmers can fix many
tricky bugs through the generation and
analysis of rich datasets.

˽˽ Modern debugging tools offer powerful
and specialized facilities that can
save hours of tedious unproductive
debugging work.

http://dx.doi.org/10.1145/3186278

NOVEMBER 2018 | VOL. 61 | NO. 11 | COMMUNICATIONS OF THE ACM 125

I
M

A
G

E
R

Y
 B

Y
 B

O
B

N
E

V
V

 A
N

D
 A

R
T

-S
O

N
I

K

atized into the process illustrated by
the Unified Modeling Language activity
diagram in Figure 1. The first step in-
volves reliably reproducing the failure.
It is up to the programmer to produce
meaningful results when running ex-
periments to find the failure’s cause.
Then comes the task of simplifying the
failure’s configuration into the small-
est test case that would still cause the
failure to occur.40 The small test case
simplifies and speeds up the program-
mer’s subsequent fault-discovery work.
The corresponding steps are outlined

in-time debuggers and automatic fault
localization, and consider design, con-
currency, and memory faults as the
most difficult to debug. The low level
of knowledge and use associated with
many advanced debugging techniques
was also revealed in a mixed-methods
study conducted by Moritz Beller and
colleagues at the Delft University of
Technology, the Netherlands, and my-
self.3 In addition, a team led by Marcel
Böhme of Monash University, Clayton,
VIC, Australia, performed a controlled
study by having software profession-

als fix faults in a carefully constructed
benchmark suite of software faults,6
finding that professionals typically
agree on fault locations they identified
using trace-based and interactive de-
bugging. However, the study’s subjects
then went on to implement incorrect
fixes, suggesting opportunities for au-
tomated regression testing.

Beginners sometimes view debug-
ging as an opaque process of randomly
trying things until locating a fault, a
method closer to alchemy than to sci-
ence. Yet debugging can be system-

126 COMMUNICATIONS OF THE ACM | NOVEMBER 2018 | VOL. 61 | NO. 11

contributed articles

copy-and-paste an error message in a
Web search engine and select the most
promising answer, that is what the pro-
grammer should do. One can often ob-
tain better results by polishing the que-
ry, removing context-dependent data
(such as variable or file names) and en-
closing the error message in quotes to
search for the exact phrase, rather than
just the words in it.

Web search typically works when a
programmer encounters problems with
widely used third-party software. Two
possible reasons can yield an unproduc-
tive search: First, the programmer may
be the first person ever to encounter the
problem. This is unlikely with popular
software but can happen when work-
ing with a cutting-edge release or with
a niche or legacy product. There is al-
ways an unlucky soul who is first to post
about a failure. Second, the error mes-
sage the programmer is looking for may
be a red herring, as with, say, a standard
innocuous warning rather than the ac-
tual cause of the failure. One must judge
search results accordingly.

Q&A sites. The Web can also help
a programmer’s debugging through
Q&A forums (such as a specific prod-
uct’s issue tracker, a company’s inter-
nal equivalent, or the various https://
stackexchange.com/ sites). If the prob-
lem is general enough, it is quite likely
an expert volunteer will quickly answer
the question. Such forums should be
used with courtesy and consideration:
One should avoid asking an already-
answered question, post to the correct
forum, employ appropriate tags, ask
using a working minimal example,
identify a correct answer, and give
back to the community by contribut-
ing answers to other questions. Writ-
ing a good question post sometimes
requires significant research.20 Then
again, I often find this process leads
me to solve the problem on my own.

Source-code availability. When the
fault occurs within open source soft-
ware, a programmer can use the Web
to find, download, and inspect the cor-
responding code.31 One should not be
intimidated by the code’s size or one’s
personal unfamiliarity. Chances are,
the programmer will be looking at only
a tiny part of the code around an error
message or the location of a crash. The
programmer can find the error mes-
sage by searching through the code

in the top part of Figure 1. The next
steps, termed the “scientific method
of debugging,”40 are outlined in the
bottom part of the figure. In them, the
programmer develops a theory about a
fault being witnessed, forms a hypoth-
esis regarding the theory’s effects, and
gathers and tests data against the hy-
pothesis.24 The programmer repeatedly
refines and tests the theory until the
cause of the failure is found.

The programmer may sometimes
short-circuit this process by guessing
directly a minimal test case or the fail-
ure’s cause. This is fine, especially if the
programmer’s intuition as an expert
provides correct guidance to the cause.
However, when the going gets tough,
the programmer should humbly fall
back on the systematic process instead
of randomly poking the software trying
to pinpoint the fault through sheer luck.

The goal of this article is to arm soft-
ware developers with both knowledge-
gathering and theory-testing methods,
practices, tools, and techniques that
give them a fighting chance when strug-
gling to find the fault that caused a fail-
ure. Some techniques (such as examin-
ing a memory image, still often termed
a magnetic memory “core dump”)
have been with programmers since the
dawn of computing. Others (such as re-
verse debugging) are only now becom-
ing routinely available. And yet others
(such as automatic fault localization
based on slicing or statistical analysis)
do not seem to have caught on.27 I hope
that summarizing here the ones I find
through my experience as most effec-
tive can improve any programmer’s de-
bugging performance.

On the Shoulders of Colleagues
The productivity boost I get as a devel-
oper by using the Web is such that I now
rarely write code when I lack Internet
access. In debugging, the most useful
sources of help are Web search, special-
ized Q&A sites, and source-code reposi-
tories. Keep in mind that the terms of
a programmer’s work contract might
prohibit some of these help options.

Web search. Looking for answers
on the Web might sound like cheating.
But when debugging, the program-
mer’s goal is to solve a problem, not
demonstrate academic knowledge and
problem-solving skills. If the fastest
way to pinpoint and fix a problem is to

When the going
gets tough, the
programmer should
humbly fall back
on the systematic
process instead of
randomly poking
the software trying
to pinpoint the fault
through sheer luck.

NOVEMBER 2018 | VOL. 61 | NO. 11 | COMMUNICATIONS OF THE ACM 127

contributed articles

tries that do not signify errors—false
positives. Nevertheless, finding and fix-
ing such errors often prevents serious
faults and can sometimes allow the
programmer to find a failure’s cause.

Dynamic analysis. An alternative
approach for analyzing a program’s dy-
namic behavior is to run it under a spe-
cialized tool. This is particularly useful
when locating a fault involves sophis-
ticated analysis of large and complex
data structures that cannot be easily
processed with general-purpose com-
mand line tools or a small script. Here
are some examples of tools a program-
mer may find useful. In languages com-
piled with the LLVM Clang front-end
the programmer can use AddressSani-
tizer,30 while a program runs, to detect
many memory-handling errors: out-
of-bounds access, use after free, use
after scope exit, and double or invalid
frees. Another related tool is Valgrind21
through which one can find potentially
unsafe uses of uninitialized values and
memory leaks. In addition, Valgrind’s
Helgrind and data race detector (DRD)
tools can help find race conditions and
lock order violations in code that uses
the POSIX threads API. If the code is
using a different thread API, the pro-
grammer should consider applying In-
tel Inspector technology,29 which also
supports Threading Building Blocks,
OpenMP, and Windows threads.

Continuous integration. Running
static program-analysis tools on code
to pinpoint a fault can be like trying to
turn the Titanic around after hitting
an iceberg. At that point, catastrophic
damage has already been done, and it is
too late to change the course of events.
In the case of a large software codebase,
trying to evaluate and fix the scores of
error messages spewed by an initial run
of a static-analysis tool can be a thorny
problem. The developers who wrote the
code may be unavailable to judge the
validity of the errors, and attempting to
fix them might reduce the code’s main-
tainability and introduce even more
serious faults. Also, the noise of exist-
ing errors hides new ones appearing
in fresh code, thus contributing to a
software-quality death spiral. To avoid
such a problem, the best approach is
to integrate execution of static analysis
into the software’s continuous-integra-
tion process,10 which entails regularly
merging (typically several times a day)

for the corresponding string. Crashes
typically offer a stack trace that tells the
programmer exactly the associated file
and line number. The programmer can
thus isolate the suspect code and look
for clues that will help isolate the flaw.
Is some part of the software miscon-
figured? Are wrong parameters being
passed through an API? Is an object in
an incorrect state for the method being
called? Or is there perhaps an actual
fault in the third-party software?

If the bug fix involves modifying
open source software, the program-
mer should consider contributing the
fix back to its developers. Apart from
being a good citizen, sharing it will
prevent the problem from resurfacing
when the software is inevitably upgrad-
ed to a newer release.

Tuning the Software-
Development Process
Some elements of a team’s software-
development process can be instru-
mental in preventing and pinpointing
bugs. Those I find particularly effective
include implementing unit tests, adopt-
ing static and dynamic analysis, and
setting up continuous integration to tie
all these aspects of software develop-
ment together. Strictly speaking, these
techniques aim for bug detection rather
than debugging or preventing bugs be-
fore they occur, rather than the location
of a failure’s root cause. However, in
many difficult cases (such as nondeter-
ministic failures and memory corrup-
tion), a programmer can apply them as
an aid for locating a specific bug. Even if
an organization’s software development
process does not follow these guide-
lines, they can be adopted progressively
as the programmer hunts bugs.

Unit tests. It is impossible to build
a bug-free system using faulty software
components and devilishly difficult
to isolate a problem in a huge lump
of code. Unit tests, which verify the
functionality of (typically small) code
elements in isolation, help in both di-
rections,28 increasing the reliability of
routines (functions or methods) they
test by guarding their correctness. In
addition, when a problem does occur,
the programmer can often try to guess
what parts may be responsible for it
and add unit tests that are likely to un-
cover it. This way of working gives the
programmer a systematic approach

for clearing suspect code until hitting
the faulty one. The new unit tests the
programmer adds also result in a bet-
ter-tested system, making refactorings
and other changes less risky.

When writing unit tests the pro-
grammer is forced to write code that
is easy to test, modular, and relatively
free of side effects. This can further
simplify debugging, allowing the pro-
grammer to inspect through the de-
bugger how each small unit behaves
at runtime, either by adding suitable
breakpoints or by directly invoking the
code through the debugger’s read-eval-
print loop, or REPL, facility.

Debugging libraries and settings.
Third-party libraries and systems
can also aid a fault-finding mission
through the debugging facilities they
provide. Some runtime libraries and
compilers (such as those of C and C++)
provide settings that guard against
pointer errors, memory buffer over-
flows, or memory leaks at the expense
of lower runtime performance. Com-
pilers typically offer options to build
code for debugging by disabling opti-
mizations (aggressive optimizations
can confuse programmers when trying
to follow the flow of control and data)
and by including more information
regarding the source code associated
with the compiled code. By enabling
these settings the programmer is bet-
ter able to catch many errors.

Static analysis. One can catch some
errors before the program begins to ex-
ecute by reasoning about the program
code through what is termed in the
software engineering literature “static
program analysis.” For example, if a
method can return a null value and
this value is subsequently derefer-
enced without an appropriate check,
a static-analysis tool can determine
the program could crash due to a null
pointer dereference. Tools (such as
FindBugs1 and Coverity Scan5) perform
this feat through multiple approaches
(such as heuristics, dataflow or con-
straint analysis, abstract interpreta-
tion, symbolic execution,8 and type and
effect systems).23 The end result is a list
of messages indicating the location
of probable faults in a particular pro-
gram. Depending on the tool, the ap-
proach being used, and the program’s
language, the list may be incomplete—
false negative results—or include en-

128 COMMUNICATIONS OF THE ACM | NOVEMBER 2018 | VOL. 61 | NO. 11

contributed articles

configuring debugging functionality,
logging and receiving debug data, and
using high(er)-level languages. Again,
a programmer can selectively adopt
these practices during challenging
bug-hunting expeditions.

Software’s debugging facilities. A
helpful way to isolate failures is to build
and use debugging facilities within the
software. The aim here is to make the
software’s operation more predictable

and transparent. For example, some
programs that execute in the back-
ground (such as Unix daemons or Win-
dows services) offer a debugging option
that causes them to operate synchro-
nously as a typical command-line pro-
gram, outputting debugging messages
on their standard output channel. This
is the approach I always use to debug
secure shell connection problems.
Other debugging settings may make
the software’s operation more deter-
ministic, which is always helpful when
trying to isolate a fault through repeat-
ed executions. Such changes may in-
clude elimination of multiple threads,
use of a fixed seed in random-number
generators, and restriction of buffers
and caches to a small size in order to
increase the likelihood of triggering
overflows and cache misses. Software
developers should consider adding
such facilities to the code they debug.
They should, however, keep in mind
that some debugging facilities can lead
to security vulnerabilities. To avoid this
risk, the programmer must ensure the
facilities are automatically removed,
disabled, or made obnoxiously con-
spicuous in production builds.

Logging. Programmers are often
able to pinpoint faults by adding or us-
ing software-logging or -tracing state-
ments.33 In their simplest form they are
plain print commands outputting de-
tails regarding the location and state of
a program’s execution. Unlike watch-
points added in a debugging session,
the statements are maintained with
the program and are easily tailored to
display complex data structures in a
readable format.

Modern software tracing is typically
performed through a logging frame-
work (such as Apache log4j and Apache
log4net) that provides a unified API for
capturing, formatting, and handling
a program’s logging output. Such a
framework also allows programmers to
tailor at runtime the program’s output
verbosity and corresponding perfor-
mance and storage cost. Programmers
typically minimize logging to that re-
quired for operational purposes when
a program executes in a production
environment but increase it to include
detailed software tracing when they
want to debug a failure.

Telemetry. An obvious extension of
logging facilities is telemetry, or the

all developer work into a shared refer-
ence version. Running static analysis
when each change is made can keep
the software codebase squeaky clean
from day one.

Making the Software
Easier to Debug
Some simple software design and pro-
gramming practices can make soft-
ware easier to debug, by providing or

Figure 1. A process for systematic debugging.

Reproduce failure

Find new configuration subset
that still yields the failure

[found]

[not found]

[possible]

[not possible]

[predictions not satisfied]

[predictions satisfied]

[refinement possible]

[no refinement possible]

Failure configuration
has been minimized

Increase granularity
of configuration subsets

Form new hypothesis
regarding failure’s cause

Make prediction
based on hypothesis

Test prediction
through experiments

Refine hypothesis

Hypothesis is failure’s diagnosis

NOVEMBER 2018 | VOL. 61 | NO. 11 | COMMUNICATIONS OF THE ACM 129

contributed articles

Suitable technologies for this ap-
proach may be scripting languages
(such as Python and R), domain-specific
languages,19 or model-driven software
development.35 Adopting high-level
formalisms that allow for symbolic
reasoning lets the programmer kill
two birds with one stone: fix the bug the
programmer is after and provide (quali-
fied) guarantees that no other bugs ex-
ist in the part of the code the program-
mer has analytically reasoned about
regarding its correctness. Once the al-
ternative implementation is working,
the programmer can decide whether
architectural, operational, and perfor-
mance considerations should allow
keeping the code in its new formalism,
whether to rewrite it (carefully), or au-
tomatically transform it to its original
programming language.

Insights from Data Analytics
Data is the lifeblood of debugging.
The more data that is associated with a
failure, the easier it is to find the corre-
sponding fault. Fortunately, nowadays,
practically limitless secondary storage,
ample main memory, fast processors,
and broadband end-to-end network
connections make it easy to collect
and process large volumes of debug-
ging data. The data can come from the
development process (such as from re-
vision-control systems and integrated
development environments, or IDEs),
as well as from program profiling. The
data can be analyzed with specialized
tools, an editor, command-line tools,
or small scripts.

Some of the processes described
here have been systematized and au-
tomated by Andreas Zeller of Saarland
University, Germany, under the term
“delta debugging”38 and used to locate
cause-effect chains in program states39
and simplify failure-inducing inputs.41
Although the corresponding tools were
mostly research prototypes, the same
ideas can be applied on an ad hoc basis
to improve the effectiveness of debug-
ging tasks. Consider these representa-
tive examples:

Revision-control data. Bugs often oc-
cur as the software evolves. By keeping
software under version control, using
configuration management tools (such
as Git, Mercurial, and Subversion), the
programmer can dig into a project’s
history to aid debugging work. Here are

ability to obtain debugging data from
remote program executions (such as
those by the program’s end users).
Ideally, a programmer would want to
be able to obtain the following types
of data: First, data associated with the
execution context (such as the version
of the program, helper code, and oper-
ating system); values of environment
variables; and contents of configura-
tion files. Then comes data about the
program’s operational status (such
as commands executed, settings, and
data files). And finally, in cases of pro-
gram crashes a programmer also needs
details regarding the location of the
program crash (such as method name,
line number, and program counter),
runtime context (such as call stack, val-
ues of parameters, local variables, and
registers), and the reason behind the
crash (such as uncaught exception or
illegal memory access).

Setting up a telemetry facility before
the software is distributed can be a life-
saver when a nasty bug surfaces. On
some platforms, a third-party library
can be used to collect the required
data, outsource its collection, and ac-
cess the results through a Web dash-
board. Keep in mind that telemetry
records often contain personal data.
When raw memory is recorded, confi-
dential data the reporting code did not
gather explicitly (such as passwords
and keys) can end up in the telemetry
database. Software development teams
should consider (carefully) what data
to collect, how long to store it, and how
they will protect it, and disclose these
details to the user.

High-level languages. Another last-
resort approach a programmer may
have to turn to when debugging com-
plex algorithms, data structures, or pro-
tocols may be the implementation of the
code in a higher-level formalism. This
approach is useful when the program-
ming language developers are working
with blurs their focus on the problem’s
essence. Verbose type declarations,
framework boilerplate, unsafe pointers,
obtuse data types, or spartan libraries
may prevent one from expressing and
fixing the parts that matter, burying the
programmer instead in a tar-pit of tan-
gential goo. Lifting the code’s level of
abstraction may simplify finding wheth-
er a knotty failure stems from errors in
the logic or in the implementation.

My favorite source
of intelligence
regarding
a system’s
operation is
the calls it makes
to the operating
system.

130 COMMUNICATIONS OF THE ACM | NOVEMBER 2018 | VOL. 61 | NO. 11

contributed articles

system. They (and their results) often
determine to a very large extent a pro-
gram’s behavior. Consequently, any
divergence between operating system
calls is a valuable hint regarding the
fault the programmer is trying to lo-
cate. For example, the programmer
may see that one program tries to open
a file that does not exist, times out on
a network connection, or runs out of
memory. To trace system calls, the pro-
grammer can use the strace, ktrace, or
truss tools under Unix and similar sys-
tems and Procmon18 under Windows.

The interactions the programmer
wants to investigate may also occur at
other levels of a system’s stack. The pro-
grammer can trace calls to dynamically
linked libraries with ltrace7 (Unix) and
Procmon (Windows). The program-
mer can also untangle interactions
with services residing on other hosts
by examining network packets through
Wireshark’s25 nifty GUI. Keep in mind
that most relational database systems
provide a way to keep and examine a
log of executed SQL statements. The
programmer can sometimes better
understand a program’s behavior by
obtaining a snapshot of its open files
and network connections. Tools that
provide this information include lsof
(Unix), netstat (Unix and Windows),
and tcpvview (Windows). Finally, two
tools, DTrace14 and SystemTap11 allow
the programmer to trace a system’s
operation across the entire software
stack. They should be used if available.

A programmer can also investigate
a failing program’s trace log without
using a working program’s log as a
reference. However, such an investiga-
tion typically requires a deeper under-
standing of the program’s operation,
the ability to pinpoint the pertinent log
parts, and access to the source code in
order to decipher the trace being read.
Things to look for in such cases are
failing system calls, library calls that
return with an error, network timeouts,
and empty query result sets.

The log files of the failing system
and the working system often differ in
subtle ways that hinder their automatic
comparison; for example, they may in-
clude different timestamps, process
identifiers, or host names. The solution
is thus to remove the unessential differ-
ing fields. The programmer can do that
with the editor, Unix filter tools, or a

small script. And then apply one of sev-
eral file-differencing tools to find where
the two log files diverge.

Editor tricks. A powerful text editor
or IDE can be a great aid when analyz-
ing log data. Syntax coloring can help the
programmer identify the relevant parts.
With rectangular selections and regular
expressions one can eliminate boiler-
plate or nonessential columns to focus
on the essential elements or run a file-dif-
ference program on them. The program-
mer can also identify patterns associated
with a bug using search expressions and
matched-text highlighting. Finally, by
displaying multiple buffers or windows
the programmer can visually inspect the
details of different runs.

Command-line tools. The program-
mer can also perform and, more impor-
tant, automate many of these tasks and
much more with Unix-derived com-
mand-line filter tools15,32 available na-
tively or as add-ons on most platforms
(such as GNU/Linux, Windows using
Cygwin, and macOS). The programmer
can easily combine them to perform
any imaginable debugging analysis
task. This is important, as effective de-
bugging often requires developing and
running ad hoc processing tasks.

Here are several examples of how
typical Unix command-line tools can
be used in a debugging session: The
programmer fetches data from the file
system using the find command from
webpages and services using curl and
from compiled files (depending on the
platform) by running nm, javap, or
dumpbin. The programmer can then
select lines that match a pattern with
grep, extract fields with cut, mas-
sage the content of lines with sed, and
perform sophisticated selections and
summarize with awk. With normalized
datasets at hand, the programmer can
then employ sort and uniq to create
ordered sets and count occurrences,
comm and join to find set differences
and join sets together, and diff to
look at differences. Lastly, the number
of results can be summarized with
wc, the first or last records can be ob-
tained with head or tail, and a hash
for further processing derived through
md5sum. For tasks that are performed
often, it is a good practice to package
the invocation of the corresponding
commands into a Unix shell script
and distribute the script as part of the

some examples: If a program crashes or
misbehaves at a particular program line
the programmer can analyze the source
code to see the last change associated
with that line (for example, with the
git blame command). A review of the
change can then reveal that, say, one’s
colleague who implemented it forgot
to handle a specific case. Alternatively,
by reading the version-control log of
software changes, the programmer can
find a recent change that may be relat-
ed to the failure being witnessed and
examine it in detail.

Another neat use of the version-
control system for debugging is to
automatically find the change that
introduced a fault. Under Git the pro-
grammer constructs a test case that
causes the fault and then specifies it
to the git bisect command togeth-
er with a window of software versions
where the fault probably appeared. The
command will then run a binary search
among all the versions within the win-
dow in order to determine the exact
change that triggered the failure.

Differential debugging. Differenc-
es between datasets can also reveal a
fault when the programmer can lay
hands on a working system and a fail-
ing one.34 The goal is to find where and
why the operation of the two systems
diverges. The data that can be used
for this purpose can come from their
generated log files, their execution
environment, or traces of their opera-
tion. In all cases the programmer must
ensure the two system configurations
are as similar as possible, apart from
exhibiting the failure.

Examining log files for differences
can be easily performed by configuring
the most detailed logging possible, col-
lecting the logs, removing nonessential
differences (or keeping only the perti-
nent records), and comparing them.

Looking for differences in the envi-
ronment in which the two systems op-
erate involves examining a program’s
user input, command-line arguments,
environment variables, accessed files
(including configuration, executables,
and libraries), and associated services.

Investigating differences in the
operation of the two systems is more
difficult, but thankfully many tools
can help. My favorite source of intelli-
gence regarding a system’s operation
is the calls it makes to the operating

NOVEMBER 2018 | VOL. 61 | NO. 11 | COMMUNICATIONS OF THE ACM 131

contributed articles

code or control breakpoints that are
easily implemented by patching the
code location where a breakpoint is in-
serted, data breakpoints are difficult to
implement efficiently because the cor-
responding value needs to be checked
after each CPU instruction. A debugger
could check the value in software by
single-stepping through the program’s
instructions but would reduce its ex-
ecution speed to intolerable levels.

Many current CPUs instead of-
fer the ability to perform this check
through their hardware using so-
called write monitors. All the debug-
ger has to do is to set special proces-
sor registers with the memory address
and the length of the memory area the
programmer wants to monitor. The
processor will then signal the debug-
ger every time the contents of these
locations change. Based on this facil-
ity, a debugger can also implement a
conditional data breakpoint that inter-
rupts the program’s execution when a
value satisfies a given condition. The
computational overhead in this case
is a bit greater because the debugger

code’s software-developer tools.
As a concrete case, consider the task

of locating a resource leak in the code.
A simple heuristic could involve look-
ing for mismatches between the num-
ber of calls to obtainResource and
calls to releaseResource; see Figure
2 for a small Bash script that performs
this task. The script uses the grep and
sort commands to create two ordered
sets: one with the number of calls to
obtainResource in each file and an-
other with the corresponding number
of calls to releaseResource. It then
provides the two sets to the comm com-
mand that will display the cases where
records in the two sets do not match.

Scripting languages. If the editor
cannot handle the required debug-
ging analysis and the programmer is
daunted by the Unix command-line in-
terface, one can also analyze data with
a scripting language (such as Python,
Ruby, or Perl). Typical tasks that need
to be mastered in order to analyze de-
bugging data include sequential read-
ing of text records from a file, splitting
text lines on some delimiter, extract-
ing data through regular expression
matching, storing data in associative
arrays, and iterating through arrays to
summarize the results. An advantage
of such scripts over other data-analysis
approaches is the programmer can
easier integrate them within compos-
ite project workflows that may involve
sending email messages to developers
or updating databases and dashboards.

Profiling. When debugging perfor-
mance issues, the tools the program-
mer can use various profilers to debug
individual processes. The simplest
work through sampling, interrupting
the program’s behavior periodically
and giving a rough indication regard-
ing the routines where the program
spends most of its time. The program-
mer thus identifies the routines on
which to concentrate optimization
efforts. One notch more advanced is
graph-based profilers13 that intercept
each routine’s entry and exit in order
to provide precise details not only of
a routine’s contribution to the soft-
ware’s overall CPU use but also how the
cost is distributed among the routine’s
callers. An added complication of per-
formance debugging in modern sys-
tems is that machine instructions can
vary their execution time by at least an

order of magnitude based on context.
To get to the bottom of such problems
the programmer needs to obtain de-
tails of low-level hardware interactions
(such as cache misses and incorrect
jump predictions) through tools that
use the CPU’s performance counters.
These counters tally CPU events asso-
ciated with performance and expose
them to third-party tools (such as the
Concurrency Visualizer extension for
Visual Studio, Intel’s VTune Perfor-
mance Analyzer, and the Linux perf
command). For example, performance
counters can allow the programmer to
detect performance issues associated
with false sharing among threads.

Getting More from a Debugger
Given the propensity of software to at-
tract and generate bugs, it is hardly sur-
prising that the capabilities of debug-
gers are constantly evolving:

Data breakpoints. One impressive
facility in many modern debuggers is
the ability to break a program’s opera-
tion when a given value changes, the
so-called “data breakpoints.” Unlike

Figure 2. Ad hoc location of a probable resource leak.

List non -common lines between the two sets

comm -3 <(

Counts per file of obtainResource

grep -rc obtainResource . | sort) <(

Counts per file of releaseResource

grep -rc releaseResource . | sort)

Figure 3. Example of a reverse-debugging session.

Breakpoint 1, main () at hairy_code.c:1219

1219 read_data ();

(gdb) record

(gdb) next

1220 analyze_data ();

(gdb) next

hairy_code: Panic!

1221 display_results ();

(gdb) reverse -next

1220 analyze_data ();

(gdb) step

analyze_data () at hairy_code.c:1209

1209 if (n == 0)

(gdb) step

1210 warnx (" Panic !");

132 COMMUNICATIONS OF THE ACM | NOVEMBER 2018 | VOL. 61 | NO. 11

contributed articles

 read _ data();
 analyze _ data();
 display _ results();

Stepping into each routine to see if
it prints the message may take ages.
Figure 3 shows the log of a gdb debug-
ger session, demonstrating how a pro-
grammer can find the location through
reverse debugging; the source code
line listed before each gdb prompt is
the one to be executed next. Graphi-
cal interfaces to similar functionality
are also available through commercial
offerings (such as Microsoft’s Intel-
liTrace for the .NET platform and the
Chronon Time Travelling Debugger for
the Java ecosystem).

The programmer first sets up gdb for
reverse debugging by issuing the re-
cord command, then runs each func-
tion but steps over its innards with the
next command. Once the program-
mer sees the “Panic!” message, which is
emitted by the analyze data routine,
the programmer issues the reverse-
next command to undo the previous
next and move the execution context
again just before the call to the ana-
lyze.data routine. This time the pro-
grammer issues the step command to
step into the routine and find why the
message appeared.

Capture and replicate. With multi-
core processors found in even low-end
smartphones today, multithreaded
code and the bugs associated with it
are a (frustrating) fact of life. Debug-
ging such failures can be difficult be-
cause the operation of multithreaded
programs is typically nondetermin-
istic; each run of a program executes
the threads in a slightly different order
that may or may not trigger the bug. I
recall the agony of debugging multi-
threaded rendering code that would
occasionally miscalculate just a cou-
ple of pixels in a four-million-pixel im-
age. To pinpoint a race condition that
exhibits itself in a few nanoseconds
within a multi-hour program run, pro-
grammers need all the help they can
get from powerful software.

Tools helpful in such cases are
often those able to capture and rep-
licate in full detail a program’s mem-
ory-access operations16 (such as the
PinPlay/DrDebug Program Record/
Replay Toolkit,26 which can be used
with Eclipse or gdb, and the Cronon

recorder and debugger, which works
with Java applications). The way pro-
grammers work with these tools is to
run the application under their con-
trol until the failure emerges. This run
will generate a recording of the session
that can then be replayed under a spe-
cialized debugger to locate the state-
ment that causes the failure. With the
statement in hand the programmer
can look at the program state to see
what caused the particular statement
to execute or why its execution was
not prevented through a suitable lock.
These tools thus transform a fleeting
nondeterministic failure into a stable
one that can be targeted and debugged
with ease.

Running and dead processes. Two
time-honored but still very useful
things programmers can do with a de-
bugger is to debug processes that are
already running and processes that
have crashed. Debugging a running
process is the way to go if it is misbe-
having with a failure that is difficult
to reproduce. In this case, a program-
mer would use the operating system’s
process-display command (such as ps
under Unix and TaskManager under
Windows) to find the numerical identi-
fier of the offending process. The pro-
grammer can then fire the debugger,
instructing it to debug the process’s
executable file but also to attach itself
to the running process specified by
its identifier. From this point onward,
programmers can use the debugger as
they normally would:

Interrupt stuck program. A program-
mer can interrupt a stuck program to
see at what point the program entered
into an endless loop or issued a non-
returning system call;

Add new breakpoints. A programmer
can add new breakpoints to see when
and how a program reaches a particu-
lar code position; and

Examine values. A programmer can
examine the values of variables and
display the call stack.

Debugging a crashed process al-
lows programmers to perform a
post-mortem examination of the
facts related to its demise. Some sys-
tems allow programmers to launch
a debugger at the moment a process
crashes. A more flexible alternative
involves obtaining an image of the
memory associated with the process,

has to check the condition on every
change but still orders of magnitude
lower than the alternative of checking
after every instruction.

Data breakpoints are especially use-
ful when the programmer is unfamiliar
with the program’s operation and wants
to pinpoint what statements change
a particular value. They also come in
handy in languages that lack memory
bounds checking (such as C and C++)
in order to identify the cause of memory
corruption. All a programmer has to do
is set a data breakpoint associated with
the corrupted element and wait for the
data breakpoint to trigger.

Reverse debugging. Another cool
feature available through recent ad-
vances in hardware capabilities is “re-
verse debugging,”12 or the ability to run
code in reverse, in effect traveling back in
time. When forward-stepping through
the code starting from a statement A, a
programmer finds statements and vari-
ables that can be influenced by A, called
by researchers a “forward slice.”40 When
stepping through code in reverse from
A, a programmer finds statements and
values that could have influenced A; this
backward slice can help the program-
mer understand how the program end-
ed up in a specific state.

Reverse debugging is implemented
through brute-force computation by
having the debugger log the effect of
each instruction and thereby obtain
the data required to undo it. It has be-
come feasible with fast CPUs and abun-
dant main memory. When debugging a
single application, not all actions can
be undone; once an operating system
call has been performed on a program,
effects that cross the debugger’s event
horizon are there to stay. Nevertheless,
the capability can be beneficial when
debugging algorithmic code. It is most
useful in cases where, while search-
ing for the cause of a failure, a pro-
grammer might inadvertently step or
glance over the culprit statements. At
this point, the programmer can rewind
the execution to the point before the
culprit statements and move forward
again more cautiously.

As an example, consider debugging
a problem associated with the display
of the cryptic message “Panic!,” which
appears in hundreds of places within
the code. At some point the program-
mer may be going over code like this

NOVEMBER 2018 | VOL. 61 | NO. 11 | COMMUNICATIONS OF THE ACM 133

contributed articles

brought with them the necessity of be-
ing able to debug systems remotely. A
debugger with a graphical interface is
not ideal in such situations because it
might not be sufficiently responsive
when debugging a cloud application
across the planet or when a particu-
lar IoT platform may lack the power
to run it. Consequently, it may make
sense for programmers to acquaint
themselves with a debugger’s com-
mand-line interface, as well as the
shell commands required to debug
more complex systems. An alterna-
tive that may sometimes work is a GUI
debugger’s ability to communicate
with a small remote debugger-monitor
program the programmer installs and
runs at the remote end.

Monitoring. When debugging dis-
tributed systems, monitoring and
logging are the name of the game.
Monitoring will flash a red light when
something goes wrong, giving the team
an opportunity to examine and under-
stand why the system is misbehaving
and thus help pinpoint the underlying
cause. In such cases a programmer is
often not debugging the code of indi-
vidual processes but the architecture,
configuration, and deployment of
systems that may span an entire data-
center or the entire planet. A team can
monitor individual failures and perfor-
mance trends with systems like Nag-
ios, NetData, Ganglia, and Cacti. An in-
teresting approach for generating and
thus being able to debug rare failures
in complex distributed systems is to
cause controlled component failures
through specialized software, an ap-
proach pioneered by Netflix through
its ChaosMonkey.36

Event logging. Given that it is not yet
possible for a programmer to single-
step concurrently through the multi-
tude of processes that might comprise
a modern system, when debugging
such failures a programmer must rely
on event logging, which involves pro-
cesses logging operational events that
target system administrators and reli-
ability engineers. Unlike the software-
tracing statements a programmer may
use to pinpoint a failure in an individ-
ual process, event logging is always en-
abled in a production environment. By
providing “observability,” logging can
help operations personnel ascertain
an application’s health status, view its

the so-called “core dump” (Unix) or
Minidump (Windows). This allows
the programmer to obtain the dump
from a production environment or a
customer site and then dissect it on
the development environment. There
are various methods for obtaining a
process’s memory dump. On Unix sys-
tems, a programmer typically will con-
figure the operating system core file
size limit through the system’s shell
and then wait for the process to crash
or send it a SIGQUIT signal. On Win-
dows systems a programmer can use
the Procdump18 program to achieve
the same results. In both cases, ob-
taining a memory dump from a still-
running but hung process allows the
programmer to debug infinite loops
and concurrency deadlocks.9

Although a memory dump will not
allow a programmer to resurrect and
step through the execution of the cor-
responding process, though it is still
useful, because the programmer can
examine the sequence of calls that
were in effect at the point of the crash,
the local variables of each routine in
that sequence, and the values of global
and heap-allocated objects.

Debugging Distributed Systems
Modern computing rarely involves an
isolated process running on a system
that matches a programmer’s par-
ticular development environment. In
many cases, the programmer is deal-
ing with tens to thousands of process-
es, often distributed around the world
and with diverse hardware ranging
from resource-constrained Internet of
Things (IoT) devices, to smartphones,
to experimental and specialized plat-
forms. While these systems are the fuel
powering the modern economy, they
also present programmers with special
challenges. According to the insightful
analysis by Ivan Beschastnikh and col-
leagues at the University of British Co-
lumbia, these are heterogeneity, con-
currency, distributing state, and partial
failures.4 Moreover, following my own
experience, add the likely occurrence of
events that would be very rare on an iso-
lated machine, the difficulty of correlat-
ing logs across several hosts,2 and rep-
licating failures in the programmer’s
development environment.

Remote debugging. The emergence
of cloud computing and the IoT have

No bug can elude
a programmer
who perseveres.

134 COMMUNICATIONS OF THE ACM | NOVEMBER 2018 | VOL. 61 | NO. 11

contributed articles

to logging, to single-stepping, to con-
structing a unit test, or a specialized
tool. No bug can elude a programmer
who perseveres. And keep in mind that
the joy of fixing a fault is proportional
to the work the programmer puts into
debugging the failure.

Acknowledgments
My thanks to Moritz Beller, Alexander
Lattas, Dimitris Mitropoulos, Tushar
Sharma, and the anonymous reviewers
for insightful comments on earlier ver-
sions of this article. 	

References
1.	 Ayewah, N., Hovemeyer, D., Morgenthaler, J.D., Penix,

J., and Pugh, W. Using static analysis to find bugs.
IEEE Software 25, 5 (Sept. 2008), 22–29.

2.	 Bailis, P., Alvaro, P., and Gulwani, S. Research for
practice: Tracing and debugging distributed systems;
programming by examples. Commun. ACM 60, 7 (July
2017), 46–49.

3.	 Beller, M., Spruit, N., Spinellis, D., and Zaidman, A.
On the dichotomy of debugging behavior among
programmers. In Proceedings of the 40th International
Conference on Software Engineering (Gothenburg,
Sweden, May 27–June 3). ACM Press, New York, 2018,
572–583.

4.	 Beschastnikh, I., Wang, P., Brun, Y., and Ernst, M.D.
Debugging distributed systems. Commun. ACM 59, 8
(Aug. 2016), 32–37.

5.	 Bessey, A., Block, K., Chelf, B., Chou, A., Fulton, B.,
Hallem, S., Henri-Gros, C., Kamsky, A., McPeak, S., and
Engler, D. A few billion lines of code later: Using static
analysis to find bugs in the real world. Commun. ACM
53, 2 (Feb. 2010), 66–75.

6.	 Böhme, M., Soremekun, E.O., Chattopadhyay, S.,
Ugherughe, E., and Zeller, A. Where is the bug and
how is it fixed? An experiment with practitioners. In
Proceedings of the 11th Joint Meeting on Foundations
of Software Engineering (Paderborn, Germany, Sept.
4–8). ACM Press, New York, 2017, 117–128.

7.	 Branco, R.R. Ltrace internals. In Proceedings of the
Linux Symposium, A.J. Hutton and C.C. Ross, Eds.
(Ottawa, ON, Canada, June 27–30, 2007), 41–52;
https://www.kernel.org/doc/ols/2007/ols2007v1-
pages-41-52.pdf

8.	 Cadar, C. and Sen, K. Symbolic execution for software
testing: Three decades later. Commun. ACM 56, 2
(Feb. 2013), 82–90.

9.	 Cantrill, B. and Bonwick, J. Real-world concurrency.
Commun. ACM 51, 11 (Nov. 2008), 34–39.

10.	 Duvall, P.M., Matyas, S., and Glover, A. Continuous
Integration: Improving Software Quality and Reducing
Risk. Pearson Education, Boston, MA, 2007.

11.	 Eigler, F.C. Problem solving with Systemtap. In
Proceedings of the Linux Symposium, A. J. Hutton
and C. C. Ross, Eds. (Ottawa, ON, Canada, July
19–22, 2006), 261–268; https://www.kernel.org/doc/
ols/2006/ols2006v1-pages-261-268.pdf

12.	 Engblom, J. A review of reverse debugging. In
Proceedings of the 2012 System, Software, SoC and
Silicon Debug Conference (Vienna, Austria, Sept.
19–20). Electronic Chips & Systems Design Initiative,
Gières, France, 2012, 28–33.

13.	 Graham, S.L., Kessler, P.B., and McKusick, M.K. An
execution profiler for modular programs. Software:
Practice & Experience 13, 8 (Aug.1983), 671–685.

14.	 Gregg, B. and Mauro, J. DTrace: Dynamic Tracing in
Oracle Solaris, Mac OS X, and FreeBSD. Prentice Hall
Professional, Upper Saddle River, NJ, 2011.

15.	 Kernighan, B.W. Sometimes the old ways are best.
IEEE Software 25, 6 (Nov. 2008), 18–19.

16.	 LeBlanc, T.J. and Mellor-Crummey, J.M. Debugging
parallel programs with Instant Replay. IEEE
Transactions on Computers C-36, 4 (Apr. 1987), 471–482.

17.	 Magnusson, P.S., Christensson, M., Eskilson, J.,
Forsgren, D., Hallberg, G., Hogberg, J., Larsson, F.,
Moestedt, A., and Werner, B. Simics: A full system
simulation platform. Computer 35, 2 (Feb. 2002), 50–58.

18.	 Margosis, A. and Russinovich, M.E. Windows
Sysinternals Administrator’s Reference. Microsoft
Press, Redmond, WA, 2011.

19.	 Mernik, M., Heering, J., and Sloane, A.M. When and
how to develop domain-specific languages. ACM
Computing Surveys 37, 4 (Dec. 2005), 316–344.

20.	 Nasehi, S.M., Sillito, J., Maurer, F., and Burns, C.
What makes a good code example?: A study of
programming Q&A in StackOverflow. In Proceedings
of the 28th IEEE International Conference on Software
Maintenance (Riva del Garda, Trento, Italy, Sept.
23–30). IEEE Press, 2012, 25–34.

21.	 Nethercote, N. and Seward, J. Valgrind: A framework
for heavyweight dynamic binary instrumentation. In
Proceedings of the 28th ACM SIGPLAN Conference on
Programming Language Design and Implementation
(San Diego, CA, June 10–13). ACM Press, New York,
2007, 89–100.

22.	 Neumann, P.G. Computer Related Risks. Addison-
Wesley, Reading, MA, 1995.

23.	 Nielson, F., Nielson, H.R., and Hankin, C. Principles of
Program Analysis. Springer, Berlin, Germany, 2015.

24.	 O’Dell, D.H. The debugging mind-set. Commun. ACM
60, 6 (June 2017), 40–45.

25.	 Orebaugh, A., Ramirez, G., and Beale, J. Wireshark &
Ethereal Network Protocol Analyzer Toolkit. Syngress,
Cambridge, MA, 2006.

26.	 Patil, H., Pereira, C., Stallcup, M., Lueck, G., and
Cownie, J. Pinplay: A framework for deterministic
replay and reproducible analysis of parallel programs.
In Proceedings of the Eighth Annual IEEE/ACM
International Symposium on Code Generation and
Optimization (Toronto, ON, Canada, Apr. 24–28). ACM
Press, New York, 2010, 2–11.

27.	 Perscheid, M., Siegmund, B., Taeumel, M., and
Hirschfeld, R. Studying the advancement in debugging
practice of professional software developers. Software
Quality Journal 25, 1 (Mar. 2017), 83–110.

28.	 Runeson, P. A survey of unit-testing practices. IEEE
Software 23, 4 (July 2006), 22–29.

29.	 Sack, P., Bliss, B.E., Ma, Z., Petersen, P., and Torrellas,
J. Accurate and efficient filtering for the Intel Thread
Checker race detector. In Proceedings of the First
Workshop on Architectural and System Support for
Improving Software Dependability (San Jose, CA,
Oct. 21–25). ACM Press, New York, 2006, 34–41.

30.	 Serebryany, K., Bruening, D., Potapenko, A., and
Vyukov, D. Address-Sanitizer: A fast address sanity
checker. In Proceedings of the 2012 USENIX Annual
Technical Conference (Boston, MA, June 13–15).
USENIX Association, Berkeley, CA, 2012, 309–318.

31.	 Spinellis, D. Code Reading: The Open Source
Perspective. Addison-Wesley, Boston, MA, 2003.

32.	 Spinellis, D. Working with Unix tools. IEEE Software
22, 6 (Nov./Dec. 2005), 9–11.

33.	 Spinellis, D. Debuggers and logging frameworks. IEEE
Software 23, 3 (May/June 2006), 98–99.

34.	 Spinellis, D. Differential debugging. IEEE Software 30,
5 (Sept./Oct. 2013), 19–21.

35.	 Stahl, T. and Volter, M. Model-Driven Software
Development: Technology, Engineering, Management.
John Wiley & Sons, Inc., New York, 2006.

36.	 Tseitlin, A. The anti-fragile organization. Commun.
ACM 56, 8 (Aug. 2013), 40–44.

37.	 Wilkes, M. The Birth and Growth of the Digital
Computer. Lecture delivered at the Digital Computer
Museum, available through the Computer History
Museum, Catalog Number 102695269, Sept. 1979;
https://youtu.be/MZGZfsr1KfY

38.	 Zeller, A. Automated debugging: Are we close?
Computer 34, 1 (Nov. 2001), 26–31.

39.	 Zeller, A. Isolating cause-effect chains from computer
programs. In Proceedings of the 10th ACM SIGSOFT
Symposium on Foundations of Software Engineering
(Charleston, SC, Nov. 18–22). ACM Press, New York,
2002, 1–10.

40.	Zeller, A. Why Programs Fail: A Guide to Systematic
Debugging, Second Edition. Morgan Kaufmann,
Burlington, MA, 2009.

41.	 Zeller, A. and Hildebrandt, R. Simplifying and isolating
failure-inducing input. IEEE Transactions on Software
Engineering 28, 2 (Feb. 2002), 183–200.

Diomidis Spinellis (dds@aueb.gr) is a professor in
and head of the Department of Management Science
and Technology in the Athens University of Economics
and Business, Athens, Greece, and author of Effective
Debugging: 66 Specific Ways to Debug Software and
Systems, Addison-Wesley, 2016.

© 2018 ACM 0001-0782/18/11 $15.00

interactions with other processes, and
determine changes in a system’s con-
figuration. By listing metrics and error
messages, logs can reveal a sickly ap-
plication (such as one with unusually
high latency or memory use) or expose
one that fails due to insufficient privi-
leges. Such things can help program-
mers pinpoint a specific application
as a contributing factor in a more com-
plex failure.

Virtualization and system simula-
tors. One family of technologies that
can help debug software running
on hardware that does not match a
given development environment in-
cludes virtual machines, emulators,
and system simulators. With virtual
machines and operating system vir-
tualization systems (such as Docker),
software development teams can cre-
ate a single environment that can be
used for development, debugging,
and production deployment. Such
containers are also useful when a pro-
grammer wants to find and eliminate
configuration-related errors. More-
over, development environments for
some commonly used embedded plat-
forms (such as smartphones) come
with an emulator, allowing program-
mers to experience the capabilities of
the target hardware from the comfort
of a desktop. Finally, when a team is
developing software and hardware to-
gether, a full system simulator (such
as Simics17) will provide a high-fidelity
view of the complete platform stack.

Conclusion
The number of possible faults in a soft-
ware system can easily challenge the
limits of human ingenuity. Debugging
the corresponding failures thus re-
quires an arsenal of tools, techniques,
methods, and strategies. Here I have
outlined some I find particularly effec-
tive, but there are many others I con-
sider useful, as well as many special-
ized ones that may work wonders in a
particular environment.

Each debugging session represents
a new venture into the unknown. Pro-
grammers should work systemati-
cally, starting with an approach that
matches the failure’s characteristics,
but adapt it quickly as they uncover
more things about the failure’s prob-
able cause. Programmers should not
hesitate to switch from Web searching,

