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we still regularly make mistakes in our 
programs and spend a large part of our 
development effort trying to fix them. 

Moreover, nowadays, failures can 
occur nondeterministically in nano-
second time spans within computer 
systems consisting of thousands of 
processors spanning the entire planet 
running software code where size is 
measured in millions of lines. Failures 
can also be frighteningly expensive, 
costing human lives, bringing down 
entire industries, and destroying valu-
able property.22 Thankfully, debug-
ging technology has advanced over the 
years, allowing software developers 
to pinpoint and fix faults in ever more 
complex systems. 

One may reasonably wonder how 
debugging is actually performed in 
practice. Three recent publications 
have shed light on a picture full of con-
trasts. A common theme is that the 
practice and problems of debugging 
have not markedly changed over the 
past 20 years. Michael Perscheid and 
colleagues at the SAP Innovation Cen-
ter and the Hasso Plattner Institute in 
Potsdam, Germany, examined the de-
bugging practices of professional soft-
ware developers and complemented 
the results with an online study.27 They 
found developers are not trained in 
debugging, spend 20% to 40% of their 
work time in it, structure their debug-
ging process following a simplified 
scientific method (see Figure 1), are 
proficient in using symbolic debug-
gers, regularly debug by adding print 
statements, are unfamiliar with back-

THE COMPUTING PIONEER Maurice Wilkes famously 
described his 1949 encounter with debugging like this: 
“As soon as we started programming, [...] we found to 
our surprise that it wasn’t as easy to get programs right 
as we had thought it would be. [...] Debugging had to 
be discovered. I can remember the exact instant [...] 
when I realized that a large part of my life from then 
on was going to be spent in finding mistakes in my 
own programs.”37 

Seven decades later, modern computers are 
approximately one million times faster and also 
have one million times more memory than Wilkes’s 
Electronic Delay Storage Automatic Calculator, or 
EDSAC, an early stored-program computer using 
mercury delay lines. However, in terms of bugs and 
debugging not much has changed. As developers, 
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atized into the process illustrated by 
the Unified Modeling Language activity 
diagram in Figure 1. The first step in-
volves reliably reproducing the failure. 
It is up to the programmer to produce 
meaningful results when running ex-
periments to find the failure’s cause. 
Then comes the task of simplifying the 
failure’s configuration into the small-
est test case that would still cause the 
failure to occur.40 The small test case 
simplifies and speeds up the program-
mer’s subsequent fault-discovery work. 
The corresponding steps are outlined 

in-time debuggers and automatic fault 
localization, and consider design, con-
currency, and memory faults as the 
most difficult to debug. The low level 
of knowledge and use associated with 
many advanced debugging techniques 
was also revealed in a mixed-methods 
study conducted by Moritz Beller and 
colleagues at the Delft University of 
Technology, the Netherlands, and my-
self.3 In addition, a team led by Marcel 
Böhme of Monash University, Clayton, 
VIC, Australia, performed a controlled 
study by having software profession-

als fix faults in a carefully constructed 
benchmark suite of software faults,6 
finding that professionals typically 
agree on fault locations they identified 
using trace-based and interactive de-
bugging. However, the study’s subjects 
then went on to implement incorrect 
fixes, suggesting opportunities for au-
tomated regression testing. 

Beginners sometimes view debug-
ging as an opaque process of randomly 
trying things until locating a fault, a 
method closer to alchemy than to sci-
ence. Yet debugging can be system-
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copy-and-paste an error message in a 
Web search engine and select the most 
promising answer, that is what the pro-
grammer should do. One can often ob-
tain better results by polishing the que-
ry, removing context-dependent data 
(such as variable or file names) and en-
closing the error message in quotes to 
search for the exact phrase, rather than 
just the words in it. 

Web search typically works when a 
programmer encounters problems with 
widely used third-party software. Two 
possible reasons can yield an unproduc-
tive search: First, the programmer may 
be the first person ever to encounter the 
problem. This is unlikely with popular 
software but can happen when work-
ing with a cutting-edge release or with 
a niche or legacy product. There is al-
ways an unlucky soul who is first to post 
about a failure. Second, the error mes-
sage the programmer is looking for may 
be a red herring, as with, say, a standard 
innocuous warning rather than the ac-
tual cause of the failure. One must judge 
search results accordingly. 

Q&A sites. The Web can also help 
a programmer’s debugging through 
Q&A forums (such as a specific prod-
uct’s issue tracker, a company’s inter-
nal equivalent, or the various https://
stackexchange.com/ sites). If the prob-
lem is general enough, it is quite likely 
an expert volunteer will quickly answer 
the question. Such forums should be 
used with courtesy and consideration: 
One should avoid asking an already-
answered question, post to the correct 
forum, employ appropriate tags, ask 
using a working minimal example, 
identify a correct answer, and give 
back to the community by contribut-
ing answers to other questions. Writ-
ing a good question post sometimes 
requires significant research.20 Then 
again, I often find this process leads 
me to solve the problem on my own. 

Source-code availability. When the 
fault occurs within open source soft-
ware, a programmer can use the Web 
to find, download, and inspect the cor-
responding code.31 One should not be 
intimidated by the code’s size or one’s 
personal unfamiliarity. Chances are, 
the programmer will be looking at only 
a tiny part of the code around an error 
message or the location of a crash. The 
programmer can find the error mes-
sage by searching through the code 

in the top part of Figure 1. The next 
steps, termed the “scientific method 
of debugging,”40 are outlined in the 
bottom part of the figure. In them, the 
programmer develops a theory about a 
fault being witnessed, forms a hypoth-
esis regarding the theory’s effects, and 
gathers and tests data against the hy-
pothesis.24 The programmer repeatedly 
refines and tests the theory until the 
cause of the failure is found. 

The programmer may sometimes 
short-circuit this process by guessing 
directly a minimal test case or the fail-
ure’s cause. This is fine, especially if the 
programmer’s intuition as an expert 
provides correct guidance to the cause. 
However, when the going gets tough, 
the programmer should humbly fall 
back on the systematic process instead 
of randomly poking the software trying 
to pinpoint the fault through sheer luck. 

The goal of this article is to arm soft-
ware developers with both knowledge-
gathering and theory-testing methods, 
practices, tools, and techniques that 
give them a fighting chance when strug-
gling to find the fault that caused a fail-
ure. Some techniques (such as examin-
ing a memory image, still often termed 
a magnetic memory “core dump”) 
have been with programmers since the 
dawn of computing. Others (such as re-
verse debugging) are only now becom-
ing routinely available. And yet others 
(such as automatic fault localization 
based on slicing or statistical analysis) 
do not seem to have caught on.27 I hope 
that summarizing here the ones I find 
through my experience as most effec-
tive can improve any programmer’s de-
bugging performance. 

On the Shoulders of Colleagues 
The productivity boost I get as a devel-
oper by using the Web is such that I now 
rarely write code when I lack Internet 
access. In debugging, the most useful 
sources of help are Web search, special-
ized Q&A sites, and source-code reposi-
tories. Keep in mind that the terms of 
a programmer’s work contract might 
prohibit some of these help options. 

Web search. Looking for answers 
on the Web might sound like cheating. 
But when debugging, the program-
mer’s goal is to solve a problem, not 
demonstrate academic knowledge and 
problem-solving skills. If the fastest 
way to pinpoint and fix a problem is to 

When the going 
gets tough, the 
programmer should 
humbly fall back 
on the systematic 
process instead of 
randomly poking 
the software trying 
to pinpoint the fault 
through sheer luck. 
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tries that do not signify errors—false 
positives. Nevertheless, finding and fix-
ing such errors often prevents serious 
faults and can sometimes allow the 
programmer to find a failure’s cause. 

Dynamic analysis. An alternative 
approach for analyzing a program’s dy-
namic behavior is to run it under a spe-
cialized tool. This is particularly useful 
when locating a fault involves sophis-
ticated analysis of large and complex 
data structures that cannot be easily 
processed with general-purpose com-
mand line tools or a small script. Here 
are some examples of tools a program-
mer may find useful. In languages com-
piled with the LLVM Clang front-end 
the programmer can use AddressSani-
tizer,30 while a program runs, to detect 
many memory-handling errors: out-
of-bounds access, use after free, use 
after scope exit, and double or invalid 
frees. Another related tool is Valgrind21 
through which one can find potentially 
unsafe uses of uninitialized values and 
memory leaks. In addition, Valgrind’s 
Helgrind and data race detector (DRD) 
tools can help find race conditions and 
lock order violations in code that uses 
the POSIX threads API. If the code is 
using a different thread API, the pro-
grammer should consider applying In-
tel Inspector technology,29 which also 
supports Threading Building Blocks, 
OpenMP, and Windows threads. 

Continuous integration. Running 
static program-analysis tools on code 
to pinpoint a fault can be like trying to 
turn the Titanic around after hitting 
an iceberg. At that point, catastrophic 
damage has already been done, and it is 
too late to change the course of events. 
In the case of a large software codebase, 
trying to evaluate and fix the scores of 
error messages spewed by an initial run 
of a static-analysis tool can be a thorny 
problem. The developers who wrote the 
code may be unavailable to judge the 
validity of the errors, and attempting to 
fix them might reduce the code’s main-
tainability and introduce even more 
serious faults. Also, the noise of exist-
ing errors hides new ones appearing 
in fresh code, thus contributing to a 
software-quality death spiral. To avoid 
such a problem, the best approach is 
to integrate execution of static analysis 
into the software’s continuous-integra-
tion process,10 which entails regularly 
merging (typically several times a day) 

for the corresponding string. Crashes 
typically offer a stack trace that tells the 
programmer exactly the associated file 
and line number. The programmer can 
thus isolate the suspect code and look 
for clues that will help isolate the flaw. 
Is some part of the software miscon-
figured? Are wrong parameters being 
passed through an API? Is an object in 
an incorrect state for the method being 
called? Or is there perhaps an actual 
fault in the third-party software? 

If the bug fix involves modifying 
open source software, the program-
mer should consider contributing the 
fix back to its developers. Apart from 
being a good citizen, sharing it will 
prevent the problem from resurfacing 
when the software is inevitably upgrad-
ed to a newer release. 

Tuning the Software- 
Development Process 
Some elements of a team’s software-
development process can be instru-
mental in preventing and pinpointing 
bugs. Those I find particularly effective 
include implementing unit tests, adopt-
ing static and dynamic analysis, and 
setting up continuous integration to tie 
all these aspects of software develop-
ment together. Strictly speaking, these 
techniques aim for bug detection rather 
than debugging or preventing bugs be-
fore they occur, rather than the location 
of a failure’s root cause. However, in 
many difficult cases (such as nondeter-
ministic failures and memory corrup-
tion), a programmer can apply them as 
an aid for locating a specific bug. Even if 
an organization’s software development 
process does not follow these guide-
lines, they can be adopted progressively 
as the programmer hunts bugs. 

Unit tests. It is impossible to build 
a bug-free system using faulty software 
components and devilishly difficult 
to isolate a problem in a huge lump 
of code. Unit tests, which verify the 
functionality of (typically small) code 
elements in isolation, help in both di-
rections,28 increasing the reliability of  
routines (functions or methods) they 
test by guarding their correctness. In 
addition, when a problem does occur, 
the programmer can often try to guess 
what parts may be responsible for it 
and add unit tests that are likely to un-
cover it. This way of working gives the 
programmer a systematic approach 

for clearing suspect code until hitting 
the faulty one. The new unit tests the 
programmer adds also result in a bet-
ter-tested system, making refactorings 
and other changes less risky. 

When writing unit tests the pro-
grammer is forced to write code that 
is easy to test, modular, and relatively 
free of side effects. This can further 
simplify debugging, allowing the pro-
grammer to inspect through the de-
bugger how each small unit behaves 
at runtime, either by adding suitable 
breakpoints or by directly invoking the 
code through the debugger’s read-eval-
print loop, or REPL, facility. 

Debugging libraries and settings. 
Third-party libraries and systems 
can also aid a fault-finding mission 
through the debugging facilities they 
provide. Some runtime libraries and 
compilers (such as those of C and C++) 
provide settings that guard against 
pointer errors, memory buffer over-
flows, or memory leaks at the expense 
of lower runtime performance. Com-
pilers typically offer options to build 
code for debugging by disabling opti-
mizations (aggressive optimizations 
can confuse programmers when trying 
to follow the flow of control and data) 
and by including more information 
regarding the source code associated 
with the compiled code. By enabling 
these settings the programmer is bet-
ter able to catch many errors. 

Static analysis. One can catch some 
errors before the program begins to ex-
ecute by reasoning about the program 
code through what is termed in the 
software engineering literature “static 
program analysis.” For example, if a 
method can return a null value and 
this value is subsequently derefer-
enced without an appropriate check, 
a static-analysis tool can determine 
the program could crash due to a null 
pointer dereference. Tools (such as 
FindBugs1 and Coverity Scan5) perform 
this feat through multiple approaches 
(such as heuristics, dataflow or con-
straint analysis, abstract interpreta-
tion, symbolic execution,8 and type and 
effect systems).23 The end result is a list 
of messages indicating the location 
of probable faults in a particular pro-
gram. Depending on the tool, the ap-
proach being used, and the program’s 
language, the list may be incomplete—
false negative results—or include en-
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configuring debugging functionality, 
logging and receiving debug data, and 
using high(er)-level languages. Again, 
a programmer can selectively adopt 
these practices during challenging 
bug-hunting expeditions. 

Software’s debugging facilities. A 
helpful way to isolate failures is to build 
and use debugging facilities within the 
software. The aim here is to make the 
software’s operation more predictable 

and transparent. For example, some 
programs that execute in the back-
ground (such as Unix daemons or Win-
dows services) offer a debugging option 
that causes them to operate synchro-
nously as a typical command-line pro-
gram, outputting debugging messages 
on their standard output channel. This 
is the approach I always use to debug 
secure shell connection problems. 
Other debugging settings may make 
the software’s operation more deter-
ministic, which is always helpful when 
trying to isolate a fault through repeat-
ed executions. Such changes may in-
clude elimination of multiple threads, 
use of a fixed seed in random-number 
generators, and restriction of buffers 
and caches to a small size in order to 
increase the likelihood of triggering 
overflows and cache misses. Software 
developers should consider adding 
such facilities to the code they debug. 
They should, however, keep in mind 
that some debugging facilities can lead 
to security vulnerabilities. To avoid this 
risk, the programmer must ensure the 
facilities are automatically removed, 
disabled, or made obnoxiously con-
spicuous in production builds. 

Logging. Programmers are often 
able to pinpoint faults by adding or us-
ing software-logging or -tracing state-
ments.33 In their simplest form they are 
plain print commands outputting de-
tails regarding the location and state of 
a program’s execution. Unlike watch-
points added in a debugging session, 
the statements are maintained with 
the program and are easily tailored to 
display complex data structures in a 
readable format. 

Modern software tracing is typically 
performed through a logging frame-
work (such as Apache log4j and Apache 
log4net) that provides a unified API for 
capturing, formatting, and handling 
a program’s logging output. Such a 
framework also allows programmers to 
tailor at runtime the program’s output 
verbosity and corresponding perfor-
mance and storage cost. Programmers 
typically minimize logging to that re-
quired for operational purposes when 
a program executes in a production 
environment but increase it to include 
detailed software tracing when they 
want to debug a failure. 

Telemetry. An obvious extension of 
logging facilities is telemetry, or the 

all developer work into a shared refer-
ence version. Running static analysis 
when each change is made can keep 
the software codebase squeaky clean 
from day one. 

Making the Software 
Easier to Debug
Some simple software design and pro-
gramming practices can make soft-
ware easier to debug, by providing or 

Figure 1. A process for systematic debugging. 
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Suitable technologies for this ap-
proach may be scripting languages 
(such as Python and R), domain-specific 
languages,19 or model-driven software 
development.35 Adopting high-level 
formalisms that allow for symbolic 
reasoning lets the programmer kill 
two birds with one stone: fix the bug the 
programmer is after and provide (quali-
fied) guarantees that no other bugs ex-
ist in the part of the code the program-
mer has analytically reasoned about 
regarding its correctness. Once the al-
ternative implementation is working, 
the programmer can decide whether 
architectural, operational, and perfor-
mance considerations should allow 
keeping the code in its new formalism, 
whether to rewrite it (carefully), or au-
tomatically transform it to its original 
programming language. 

Insights from Data Analytics 
Data is the lifeblood of debugging. 
The more data that is associated with a 
failure, the easier it is to find the corre-
sponding fault. Fortunately, nowadays, 
practically limitless secondary storage, 
ample main memory, fast processors, 
and broadband end-to-end network 
connections make it easy to collect 
and process large volumes of debug-
ging data. The data can come from the 
development process (such as from re-
vision-control systems and integrated 
development environments, or IDEs), 
as well as from program profiling. The 
data can be analyzed with specialized 
tools, an editor, command-line tools, 
or small scripts. 

Some of the processes described 
here have been systematized and au-
tomated by Andreas Zeller of Saarland 
University, Germany, under the term 
“delta debugging”38 and used to locate 
cause-effect chains in program states39 
and simplify failure-inducing inputs.41 
Although the corresponding tools were 
mostly research prototypes, the same 
ideas can be applied on an ad hoc basis 
to improve the effectiveness of debug-
ging tasks. Consider these representa-
tive examples: 

Revision-control data. Bugs often oc-
cur as the software evolves. By keeping 
software under version control, using 
configuration management tools (such 
as Git, Mercurial, and Subversion), the 
programmer can dig into a project’s 
history to aid debugging work. Here are 

ability to obtain debugging data from 
remote program executions (such as 
those by the program’s end users). 
Ideally, a programmer would want to 
be able to obtain the following types 
of data: First, data associated with the 
execution context (such as the version 
of the program, helper code, and oper-
ating system); values of environment 
variables; and contents of configura-
tion files. Then comes data about the 
program’s operational status (such 
as commands executed, settings, and 
data files). And finally, in cases of pro-
gram crashes a programmer also needs 
details regarding the location of the 
program crash (such as method name, 
line number, and program counter), 
runtime context (such as call stack, val-
ues of parameters, local variables, and 
registers), and the reason behind the 
crash (such as uncaught exception or 
illegal memory access). 

Setting up a telemetry facility before 
the software is distributed can be a life-
saver when a nasty bug surfaces. On 
some platforms, a third-party library 
can be used to collect the required 
data, outsource its collection, and ac-
cess the results through a Web dash-
board. Keep in mind that telemetry 
records often contain personal data. 
When raw memory is recorded, confi-
dential data the reporting code did not 
gather explicitly (such as passwords 
and keys) can end up in the telemetry 
database. Software development teams 
should consider (carefully) what data 
to collect, how long to store it, and how 
they will protect it, and disclose these 
details to the user. 

High-level languages. Another last-
resort approach a programmer may 
have to turn to when debugging com-
plex algorithms, data structures, or pro-
tocols may be the implementation of the 
code in a higher-level formalism. This 
approach is useful when the program-
ming language developers are working 
with blurs their focus on the problem’s 
essence. Verbose type declarations, 
framework boilerplate, unsafe pointers, 
obtuse data types, or spartan libraries 
may prevent one from expressing and 
fixing the parts that matter, burying the 
programmer instead in a tar-pit of tan-
gential goo. Lifting the code’s level of 
abstraction may simplify finding wheth-
er a knotty failure stems from errors in 
the logic or in the implementation. 

My favorite source 
of intelligence 
regarding  
a system’s 
operation is  
the calls it makes 
to the operating 
system. 
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system. They (and their results) often 
determine to a very large extent a pro-
gram’s behavior. Consequently, any 
divergence between operating system 
calls is a valuable hint regarding the 
fault the programmer is trying to lo-
cate. For example, the programmer 
may see that one program tries to open 
a file that does not exist, times out on 
a network connection, or runs out of 
memory. To trace system calls, the pro-
grammer can use the strace, ktrace, or 
truss tools under Unix and similar sys-
tems and Procmon18 under Windows. 

The interactions the programmer 
wants to investigate may also occur at 
other levels of a system’s stack. The pro-
grammer can trace calls to dynamically 
linked libraries with ltrace7 (Unix) and 
Procmon (Windows). The program-
mer can also untangle interactions 
with services residing on other hosts 
by examining network packets through 
Wireshark’s25 nifty GUI. Keep in mind 
that most relational database systems 
provide a way to keep and examine a 
log of executed SQL statements. The 
programmer can sometimes better 
understand a program’s behavior by 
obtaining a snapshot of its open files 
and network connections. Tools that 
provide this information include lsof 
(Unix), netstat (Unix and Windows), 
and tcpvview (Windows). Finally, two 
tools, DTrace14 and SystemTap11 allow 
the programmer to trace a system’s 
operation across the entire software 
stack. They should be used if available. 

A programmer can also investigate 
a failing program’s trace log without 
using a working program’s log as a 
reference. However, such an investiga-
tion typically requires a deeper under-
standing of the program’s operation, 
the ability to pinpoint the pertinent log 
parts, and access to the source code in 
order to decipher the trace being read. 
Things to look for in such cases are 
failing system calls, library calls that 
return with an error, network timeouts, 
and empty query result sets. 

The log files of the failing system 
and the working system often differ in 
subtle ways that hinder their automatic 
comparison; for example, they may in-
clude different timestamps, process 
identifiers, or host names. The solution 
is thus to remove the unessential differ-
ing fields. The programmer can do that 
with the editor, Unix filter tools, or a 

small script. And then apply one of sev-
eral file-differencing tools to find where 
the two log files diverge. 

Editor tricks. A powerful text editor 
or IDE can be a great aid when analyz-
ing log data. Syntax coloring can help the 
programmer identify the relevant parts. 
With rectangular selections and regular 
expressions one can eliminate boiler-
plate or nonessential columns to focus 
on the essential elements or run a file-dif-
ference program on them. The program-
mer can also identify patterns associated 
with a bug using search expressions and 
matched-text highlighting. Finally, by 
displaying multiple buffers or windows 
the programmer can visually inspect the 
details of different runs. 

Command-line tools. The program-
mer can also perform and, more impor-
tant, automate many of these tasks and 
much more with Unix-derived com-
mand-line filter tools15,32 available na-
tively or as add-ons on most platforms 
(such as GNU/Linux, Windows using 
Cygwin, and macOS). The programmer 
can easily combine them to perform 
any imaginable debugging analysis 
task. This is important, as effective de-
bugging often requires developing and 
running ad hoc processing tasks. 

Here are several examples of how 
typical Unix command-line tools can 
be used in a debugging session: The 
programmer fetches data from the file 
system using the find command from 
webpages and services using curl and 
from compiled files (depending on the 
platform) by running nm, javap, or 
dumpbin. The programmer can then 
select lines that match a pattern with 
grep, extract fields with cut, mas-
sage the content of lines with sed, and 
perform sophisticated selections and 
summarize with awk. With normalized 
datasets at hand, the programmer can 
then employ sort and uniq to create 
ordered sets and count occurrences, 
comm and join to find set differences 
and join sets together, and diff to 
look at differences. Lastly, the number 
of results can be summarized with 
wc, the first or last records can be ob-
tained with head or tail, and a hash 
for further processing derived through 
md5sum. For tasks that are performed 
often, it is a good practice to package 
the invocation of the corresponding 
commands into a Unix shell script 
and distribute the script as part of the 

some examples: If a program crashes or 
misbehaves at a particular program line 
the programmer can analyze the source 
code to see the last change associated 
with that line (for example, with the 
git blame command). A review of the 
change can then reveal that, say, one’s 
colleague who implemented it forgot 
to handle a specific case. Alternatively, 
by reading the version-control log of 
software changes, the programmer can 
find a recent change that may be relat-
ed to the failure being witnessed and 
examine it in detail. 

Another neat use of the version-
control system for debugging is to 
automatically find the change that 
introduced a fault. Under Git the pro-
grammer constructs a test case that 
causes the fault and then specifies it 
to the git bisect command togeth-
er with a window of software versions 
where the fault probably appeared. The 
command will then run a binary search 
among all the versions within the win-
dow in order to determine the exact 
change that triggered the failure. 

Differential debugging. Differenc-
es between datasets can also reveal a 
fault when the programmer can lay 
hands on a working system and a fail-
ing one.34 The goal is to find where and 
why the operation of the two systems 
diverges. The data that can be used 
for this purpose can come from their 
generated log files, their execution 
environment, or traces of their opera-
tion. In all cases the programmer must 
ensure the two system configurations 
are as similar as possible, apart from 
exhibiting the failure. 

Examining log files for differences 
can be easily performed by configuring 
the most detailed logging possible, col-
lecting the logs, removing nonessential 
differences (or keeping only the perti-
nent records), and comparing them. 

Looking for differences in the envi-
ronment in which the two systems op-
erate involves examining a program’s 
user input, command-line arguments, 
environment variables, accessed files 
(including configuration, executables, 
and libraries), and associated services. 

Investigating differences in the 
operation of the two systems is more 
difficult, but thankfully many tools 
can help. My favorite source of intelli-
gence regarding a system’s operation 
is the calls it makes to the operating 
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code or control breakpoints that are 
easily implemented by patching the 
code location where a breakpoint is in-
serted, data breakpoints are difficult to 
implement efficiently because the cor-
responding value needs to be checked 
after each CPU instruction. A debugger 
could check the value in software by 
single-stepping through the program’s 
instructions but would reduce its ex-
ecution speed to intolerable levels. 

Many current CPUs instead of-
fer the ability to perform this check 
through their hardware using so-
called write monitors. All the debug-
ger has to do is to set special proces-
sor registers with the memory address 
and the length of the memory area the 
programmer wants to monitor. The 
processor will then signal the debug-
ger every time the contents of these 
locations change. Based on this facil-
ity, a debugger can also implement a 
conditional data breakpoint that inter-
rupts the program’s execution when a 
value satisfies a given condition. The 
computational overhead in this case 
is a bit greater because the debugger 

code’s software-developer tools. 
As a concrete case, consider the task 

of locating a resource leak in the code. 
A simple heuristic could involve look-
ing for mismatches between the num-
ber of calls to obtainResource and 
calls to releaseResource; see Figure 
2 for a small Bash script that performs 
this task. The script uses the grep and 
sort commands to create two ordered 
sets: one with the number of calls to 
obtainResource in each file and an-
other with the corresponding number 
of calls to releaseResource. It then 
provides the two sets to the comm com-
mand that will display the cases where 
records in the two sets do not match. 

Scripting languages. If the editor 
cannot handle the required debug-
ging analysis and the programmer is 
daunted by the Unix command-line in-
terface, one can also analyze data with 
a scripting language (such as Python, 
Ruby, or Perl). Typical tasks that need 
to be mastered in order to analyze de-
bugging data include sequential read-
ing of text records from a file, splitting 
text lines on some delimiter, extract-
ing data through regular expression 
matching, storing data in associative 
arrays, and iterating through arrays to 
summarize the results. An advantage 
of such scripts over other data-analysis 
approaches is the programmer can 
easier integrate them within compos-
ite project workflows that may involve 
sending email messages to developers 
or updating databases and dashboards. 

Profiling. When debugging perfor-
mance issues, the tools the program-
mer can use various profilers to debug 
individual processes. The simplest 
work through sampling, interrupting 
the program’s behavior periodically 
and giving a rough indication regard-
ing the routines where the program 
spends most of its time. The program-
mer thus identifies the routines on 
which to concentrate optimization 
efforts. One notch more advanced is 
graph-based profilers13 that intercept 
each routine’s entry and exit in order 
to provide precise details not only of 
a routine’s contribution to the soft-
ware’s overall CPU use but also how the 
cost is distributed among the routine’s 
callers. An added complication of per-
formance debugging in modern sys-
tems is that machine instructions can 
vary their execution time by at least an 

order of magnitude based on context. 
To get to the bottom of such problems 
the programmer needs to obtain de-
tails of low-level hardware interactions 
(such as cache misses and incorrect 
jump predictions) through tools that 
use the CPU’s performance counters. 
These counters tally CPU events asso-
ciated with performance and expose 
them to third-party tools (such as the 
Concurrency Visualizer extension for 
Visual Studio, Intel’s VTune Perfor-
mance Analyzer, and the Linux perf 
command). For example, performance 
counters can allow the programmer to 
detect performance issues associated 
with false sharing among threads. 

Getting More from a Debugger 
Given the propensity of software to at-
tract and generate bugs, it is hardly sur-
prising that the capabilities of debug-
gers are constantly evolving: 

Data breakpoints. One impressive 
facility in many modern debuggers is 
the ability to break a program’s opera-
tion when a given value changes, the 
so-called “data breakpoints.” Unlike 

Figure 2. Ad hoc location of a probable resource leak. 

# List non -common lines between the two sets

comm -3 <(

# Counts per file of obtainResource

grep -rc obtainResource . | sort) <(

# Counts per file of releaseResource

grep -rc releaseResource . | sort)

Figure 3. Example of a reverse-debugging session. 

Breakpoint 1, main () at hairy_code.c:1219

1219 read_data ();

(gdb) record

(gdb) next

1220 analyze_data ();

(gdb) next

hairy_code: Panic!

1221 display_results ();

(gdb) reverse -next

1220 analyze_data ();

(gdb) step

analyze_data () at hairy_code.c:1209

1209 if (n == 0)

(gdb) step

1210 warnx (" Panic !");
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  read _ data(); 
  analyze _ data(); 
  display _ results(); 

Stepping into each routine to see if 
it prints the message may take ages. 
Figure 3 shows the log of a gdb debug-
ger session, demonstrating how a pro-
grammer can find the location through 
reverse debugging; the source code 
line listed before each gdb prompt is 
the one to be executed next. Graphi-
cal interfaces to similar functionality 
are also available through commercial 
offerings (such as Microsoft’s Intel-
liTrace for the .NET platform and the 
Chronon Time Travelling Debugger for 
the Java ecosystem).

The programmer first sets up gdb for 
reverse debugging by issuing the re-
cord command, then runs each func-
tion but steps over its innards with the 
next command. Once the program-
mer sees the “Panic!” message, which is 
emitted by the analyze data routine, 
the programmer issues the reverse-
next command to undo the previous 
next and move the execution context 
again just before the call to the ana-
lyze.data routine. This time the pro-
grammer issues the step command to 
step into the routine and find why the 
message appeared. 

Capture and replicate. With multi-
core processors found in even low-end 
smartphones today, multithreaded 
code and the bugs associated with it 
are a (frustrating) fact of life. Debug-
ging such failures can be difficult be-
cause the operation of multithreaded 
programs is typically nondetermin-
istic; each run of a program executes 
the threads in a slightly different order 
that may or may not trigger the bug. I 
recall the agony of debugging multi-
threaded rendering code that would 
occasionally miscalculate just a cou-
ple of pixels in a four-million-pixel im-
age. To pinpoint a race condition that 
exhibits itself in a few nanoseconds 
within a multi-hour program run, pro-
grammers need all the help they can 
get from powerful software. 

Tools helpful in such cases are 
often those able to capture and rep-
licate in full detail a program’s mem-
ory-access operations16 (such as the 
PinPlay/DrDebug Program Record/
Replay Toolkit,26 which can be used 
with Eclipse or gdb, and the Cronon 

recorder and debugger, which works 
with Java applications). The way pro-
grammers work with these tools is to 
run the application under their con-
trol until the failure emerges. This run 
will generate a recording of the session 
that can then be replayed under a spe-
cialized debugger to locate the state-
ment that causes the failure. With the 
statement in hand the programmer 
can look at the program state to see 
what caused the particular statement 
to execute or why its execution was 
not prevented through a suitable lock. 
These tools thus transform a fleeting 
nondeterministic failure into a stable 
one that can be targeted and debugged 
with ease. 

Running and dead processes. Two 
time-honored but still very useful 
things programmers can do with a de-
bugger is to debug processes that are 
already running and processes that 
have crashed. Debugging a running 
process is the way to go if it is misbe-
having with a failure that is difficult 
to reproduce. In this case, a program-
mer would use the operating system’s 
process-display command (such as ps 
under Unix and TaskManager under 
Windows) to find the numerical identi-
fier of the offending process. The pro-
grammer can then fire the debugger, 
instructing it to debug the process’s 
executable file but also to attach itself 
to the running process specified by 
its identifier. From this point onward, 
programmers can use the debugger as 
they normally would: 

Interrupt stuck program. A program-
mer can interrupt a stuck program to 
see at what point the program entered 
into an endless loop or issued a non-
returning system call; 

Add new breakpoints. A programmer 
can add new breakpoints to see when 
and how a program reaches a particu-
lar code position; and 

Examine values. A programmer can 
examine the values of variables and 
display the call stack. 

Debugging a crashed process al-
lows programmers to perform a 
post-mortem examination of the 
facts related to its demise. Some sys-
tems allow programmers to launch 
a debugger at the moment a process 
crashes. A more flexible alternative 
involves obtaining an image of the 
memory associated with the process, 

has to check the condition on every 
change but still orders of magnitude 
lower than the alternative of checking 
after every instruction. 

Data breakpoints are especially use-
ful when the programmer is unfamiliar 
with the program’s operation and wants 
to pinpoint what statements change 
a particular value. They also come in 
handy in languages that lack memory 
bounds checking (such as C and C++) 
in order to identify the cause of memory 
corruption. All a programmer has to do 
is set a data breakpoint associated with 
the corrupted element and wait for the 
data breakpoint to trigger. 

Reverse debugging. Another cool 
feature available through recent ad-
vances in hardware capabilities is “re-
verse debugging,”12 or the ability to run 
code in reverse, in effect traveling back in 
time. When forward-stepping through 
the code starting from a statement A, a 
programmer finds statements and vari-
ables that can be influenced by A, called 
by researchers a “forward slice.”40 When 
stepping through code in reverse from 
A, a programmer finds statements and 
values that could have influenced A; this 
backward slice can help the program-
mer understand how the program end-
ed up in a specific state. 

Reverse debugging is implemented 
through brute-force computation by 
having the debugger log the effect of 
each instruction and thereby obtain 
the data required to undo it. It has be-
come feasible with fast CPUs and abun-
dant main memory. When debugging a 
single application, not all actions can 
be undone; once an operating system 
call has been performed on a program, 
effects that cross the debugger’s event 
horizon are there to stay. Nevertheless, 
the capability can be beneficial when 
debugging algorithmic code. It is most 
useful in cases where, while search-
ing for the cause of a failure, a pro-
grammer might inadvertently step or 
glance over the culprit statements. At 
this point, the programmer can rewind 
the execution to the point before the 
culprit statements and move forward 
again more cautiously. 

As an example, consider debugging 
a problem associated with the display 
of the cryptic message “Panic!,” which 
appears in hundreds of places within 
the code. At some point the program-
mer may be going over code like this 
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brought with them the necessity of be-
ing able to debug systems remotely. A 
debugger with a graphical interface is 
not ideal in such situations because it 
might not be sufficiently responsive 
when debugging a cloud application 
across the planet or when a particu-
lar IoT platform may lack the power 
to run it. Consequently, it may make 
sense for programmers to acquaint 
themselves with a debugger’s com-
mand-line interface, as well as the 
shell commands required to debug 
more complex systems. An alterna-
tive that may sometimes work is a GUI 
debugger’s ability to communicate 
with a small remote debugger-monitor 
program the programmer installs and 
runs at the remote end. 

Monitoring. When debugging dis-
tributed systems, monitoring and 
logging are the name of the game. 
Monitoring will flash a red light when 
something goes wrong, giving the team 
an opportunity to examine and under-
stand why the system is misbehaving 
and thus help pinpoint the underlying 
cause. In such cases a programmer is 
often not debugging the code of indi-
vidual processes but the architecture, 
configuration, and deployment of 
systems that may span an entire data-
center or the entire planet. A team can 
monitor individual failures and perfor-
mance trends with systems like Nag-
ios, NetData, Ganglia, and Cacti. An in-
teresting approach for generating and 
thus being able to debug rare failures 
in complex distributed systems is to 
cause controlled component failures 
through specialized software, an ap-
proach pioneered by Netflix through 
its ChaosMonkey.36 

Event logging. Given that it is not yet 
possible for a programmer to single-
step concurrently through the multi-
tude of processes that might comprise 
a modern system, when debugging 
such failures a programmer must rely 
on event logging, which involves pro-
cesses logging operational events that 
target system administrators and reli-
ability engineers. Unlike the software-
tracing statements a programmer may 
use to pinpoint a failure in an individ-
ual process, event logging is always en-
abled in a production environment. By 
providing “observability,” logging can 
help operations personnel ascertain 
an application’s health status, view its 

the so-called “core dump” (Unix) or 
Minidump (Windows). This allows 
the programmer to obtain the dump 
from a production environment or a 
customer site and then dissect it on 
the development environment. There 
are various methods for obtaining a 
process’s memory dump. On Unix sys-
tems, a programmer typically will con-
figure the operating system core file 
size limit through the system’s shell 
and then wait for the process to crash 
or send it a SIGQUIT signal. On Win-
dows systems a programmer can use 
the Procdump18 program to achieve 
the same results. In both cases, ob-
taining a memory dump from a still-
running but hung process allows the 
programmer to debug infinite loops 
and concurrency deadlocks.9

Although a memory dump will not 
allow a programmer to resurrect and 
step through the execution of the cor-
responding process, though it is still 
useful, because the programmer can 
examine the sequence of calls that 
were in effect at the point of the crash, 
the local variables of each routine in 
that sequence, and the values of global 
and heap-allocated objects. 

Debugging Distributed Systems 
Modern computing rarely involves an 
isolated process running on a system 
that matches a programmer’s par-
ticular development environment. In 
many cases, the programmer is deal-
ing with tens to thousands of process-
es, often distributed around the world 
and with diverse hardware ranging 
from resource-constrained Internet of 
Things (IoT) devices, to smartphones, 
to experimental and specialized plat-
forms. While these systems are the fuel 
powering the modern economy, they 
also present programmers with special 
challenges. According to the insightful 
analysis by Ivan Beschastnikh and col-
leagues at the University of British Co-
lumbia, these are heterogeneity, con-
currency, distributing state, and partial 
failures.4 Moreover, following my own 
experience, add the likely occurrence of 
events that would be very rare on an iso-
lated machine, the difficulty of correlat-
ing logs across several hosts,2 and rep-
licating failures in the programmer’s 
development environment. 

Remote debugging. The emergence 
of cloud computing and the IoT have 

No bug can elude  
a programmer  
who perseveres. 
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to logging, to single-stepping, to con-
structing a unit test, or a specialized 
tool. No bug can elude a programmer 
who perseveres. And keep in mind that 
the joy of fixing a fault is proportional 
to the work the programmer puts into 
debugging the failure. 

Acknowledgments 
My thanks to Moritz Beller, Alexander 
Lattas, Dimitris Mitropoulos, Tushar 
Sharma, and the anonymous reviewers 
for insightful comments on earlier ver-
sions of this article. 	

References
1.	 Ayewah, N., Hovemeyer, D., Morgenthaler, J.D., Penix, 

J., and Pugh, W. Using static analysis to find bugs. 
IEEE Software 25, 5 (Sept. 2008), 22–29. 

2.	 Bailis, P., Alvaro, P., and Gulwani, S. Research for 
practice: Tracing and debugging distributed systems; 
programming by examples. Commun. ACM 60, 7 (July 
2017), 46–49. 

3.	 Beller, M., Spruit, N., Spinellis, D., and Zaidman, A. 
On the dichotomy of debugging behavior among 
programmers. In Proceedings of the 40th International 
Conference on Software Engineering (Gothenburg, 
Sweden, May 27–June 3). ACM Press, New York, 2018, 
572–583. 

4.	 Beschastnikh, I., Wang, P., Brun, Y., and Ernst, M.D. 
Debugging distributed systems. Commun. ACM 59, 8 
(Aug. 2016), 32–37. 

5.	 Bessey, A., Block, K., Chelf, B., Chou, A., Fulton, B., 
Hallem, S., Henri-Gros, C., Kamsky, A., McPeak, S., and 
Engler, D. A few billion lines of code later: Using static 
analysis to find bugs in the real world. Commun. ACM 
53, 2 (Feb. 2010), 66–75. 

6.	 Böhme, M., Soremekun, E.O., Chattopadhyay, S., 
Ugherughe, E., and Zeller, A. Where is the bug and 
how is it fixed? An experiment with practitioners. In 
Proceedings of the 11th Joint Meeting on Foundations 
of Software Engineering (Paderborn, Germany, Sept. 
4–8). ACM Press, New York, 2017, 117–128. 

7.	 Branco, R.R. Ltrace internals. In Proceedings of the 
Linux Symposium, A.J. Hutton and C.C. Ross, Eds. 
(Ottawa, ON, Canada, June 27–30, 2007), 41–52; 
https://www.kernel.org/doc/ols/2007/ols2007v1-
pages-41-52.pdf 

8.	 Cadar, C. and Sen, K. Symbolic execution for software 
testing: Three decades later. Commun. ACM 56, 2 
(Feb. 2013), 82–90. 

9.	 Cantrill, B. and Bonwick, J. Real-world concurrency. 
Commun. ACM 51, 11 (Nov. 2008), 34–39. 

10.	 Duvall, P.M., Matyas, S., and Glover, A. Continuous 
Integration: Improving Software Quality and Reducing 
Risk. Pearson Education, Boston, MA, 2007. 

11.	 Eigler, F.C. Problem solving with Systemtap. In 
Proceedings of the Linux Symposium, A. J. Hutton 
and C. C. Ross, Eds. (Ottawa, ON, Canada, July 
19–22, 2006), 261–268; https://www.kernel.org/doc/
ols/2006/ols2006v1-pages-261-268.pdf 

12.	 Engblom, J. A review of reverse debugging. In 
Proceedings of the 2012 System, Software, SoC and 
Silicon Debug Conference (Vienna, Austria, Sept. 
19–20). Electronic Chips & Systems Design Initiative, 
Gières, France, 2012, 28–33. 

13.	 Graham, S.L., Kessler, P.B., and McKusick, M.K. An 
execution profiler for modular programs. Software: 
Practice & Experience 13, 8 (Aug.1983), 671–685. 

14.	 Gregg, B. and Mauro, J. DTrace: Dynamic Tracing in 
Oracle Solaris, Mac OS X, and FreeBSD. Prentice Hall 
Professional, Upper Saddle River, NJ, 2011. 

15.	 Kernighan, B.W. Sometimes the old ways are best. 
IEEE Software 25, 6 (Nov. 2008), 18–19. 

16.	 LeBlanc, T.J. and Mellor-Crummey, J.M. Debugging 
parallel programs with Instant Replay. IEEE 
Transactions on Computers C-36, 4 (Apr. 1987), 471–482. 

17.	 Magnusson, P.S., Christensson, M., Eskilson, J., 
Forsgren, D., Hallberg, G., Hogberg, J., Larsson, F., 
Moestedt, A., and Werner, B. Simics: A full system 
simulation platform. Computer 35, 2 (Feb. 2002), 50–58. 

18.	 Margosis, A. and Russinovich, M.E. Windows 
Sysinternals Administrator’s Reference. Microsoft 
Press, Redmond, WA, 2011. 

19.	 Mernik, M., Heering, J., and Sloane, A.M. When and 
how to develop domain-specific languages. ACM 
Computing Surveys 37, 4 (Dec. 2005), 316–344. 

20.	 Nasehi, S.M., Sillito, J., Maurer, F., and Burns, C. 
What makes a good code example?: A study of 
programming Q&A in StackOverflow. In Proceedings 
of the 28th IEEE International Conference on Software 
Maintenance (Riva del Garda, Trento, Italy, Sept. 
23–30). IEEE Press, 2012, 25–34. 

21.	 Nethercote, N. and Seward, J. Valgrind: A framework 
for heavyweight dynamic binary instrumentation. In 
Proceedings of the 28th ACM SIGPLAN Conference on 
Programming Language Design and Implementation 
(San Diego, CA, June 10–13). ACM Press, New York, 
2007, 89–100. 

22.	 Neumann, P.G. Computer Related Risks. Addison-
Wesley, Reading, MA, 1995. 

23.	 Nielson, F., Nielson, H.R., and Hankin, C. Principles of 
Program Analysis. Springer, Berlin, Germany, 2015. 

24.	 O’Dell, D.H. The debugging mind-set. Commun. ACM 
60, 6 (June 2017), 40–45. 

25.	 Orebaugh, A., Ramirez, G., and Beale, J. Wireshark & 
Ethereal Network Protocol Analyzer Toolkit. Syngress, 
Cambridge, MA, 2006. 

26.	 Patil, H., Pereira, C., Stallcup, M., Lueck, G., and 
Cownie, J. Pinplay: A framework for deterministic 
replay and reproducible analysis of parallel programs. 
In Proceedings of the Eighth Annual IEEE/ACM 
International Symposium on Code Generation and 
Optimization (Toronto, ON, Canada, Apr. 24–28). ACM 
Press, New York, 2010, 2–11. 

27.	 Perscheid, M., Siegmund, B., Taeumel, M., and 
Hirschfeld, R. Studying the advancement in debugging 
practice of professional software developers. Software 
Quality Journal 25, 1 (Mar. 2017), 83–110. 

28.	 Runeson, P. A survey of unit-testing practices. IEEE 
Software 23, 4 (July 2006), 22–29. 

29.	 Sack, P., Bliss, B.E., Ma, Z., Petersen, P., and Torrellas, 
J. Accurate and efficient filtering for the Intel Thread 
Checker race detector. In Proceedings of the First 
Workshop on Architectural and System Support for 
Improving Software Dependability (San Jose, CA, 
Oct. 21–25). ACM Press, New York, 2006, 34–41. 

30.	 Serebryany, K., Bruening, D., Potapenko, A., and 
Vyukov, D. Address-Sanitizer: A fast address sanity 
checker. In Proceedings of the 2012 USENIX Annual 
Technical Conference (Boston, MA, June 13–15). 
USENIX Association, Berkeley, CA, 2012, 309–318. 

31.	 Spinellis, D. Code Reading: The Open Source 
Perspective. Addison-Wesley, Boston, MA, 2003. 

32.	 Spinellis, D. Working with Unix tools. IEEE Software 
22, 6 (Nov./Dec. 2005), 9–11. 

33.	 Spinellis, D. Debuggers and logging frameworks. IEEE 
Software 23, 3 (May/June 2006), 98–99. 

34.	 Spinellis, D. Differential debugging. IEEE Software 30, 
5 (Sept./Oct. 2013), 19–21. 

35.	 Stahl, T. and Volter, M. Model-Driven Software 
Development: Technology, Engineering, Management. 
John Wiley & Sons, Inc., New York, 2006. 

36.	 Tseitlin, A. The anti-fragile organization. Commun. 
ACM 56, 8 (Aug. 2013), 40–44. 

37.	 Wilkes, M. The Birth and Growth of the Digital 
Computer. Lecture delivered at the Digital Computer 
Museum, available through the Computer History 
Museum, Catalog Number 102695269, Sept. 1979; 
https://youtu.be/MZGZfsr1KfY 

38.	 Zeller, A. Automated debugging: Are we close? 
Computer 34, 1 (Nov. 2001), 26–31. 

39.	 Zeller, A. Isolating cause-effect chains from computer 
programs. In Proceedings of the 10th ACM SIGSOFT 
Symposium on Foundations of Software Engineering 
(Charleston, SC, Nov. 18–22). ACM Press, New York, 
2002, 1–10. 

40.	Zeller, A. Why Programs Fail: A Guide to Systematic 
Debugging, Second Edition. Morgan Kaufmann, 
Burlington, MA, 2009. 

41.	 Zeller, A. and Hildebrandt, R. Simplifying and isolating 
failure-inducing input. IEEE Transactions on Software 
Engineering 28, 2 (Feb. 2002), 183–200. 

Diomidis Spinellis (dds@aueb.gr) is a professor in 
and head of the Department of Management Science 
and Technology in the Athens University of Economics 
and Business, Athens, Greece, and author of Effective 
Debugging: 66 Specific Ways to Debug Software and 
Systems, Addison-Wesley, 2016. 

© 2018 ACM 0001-0782/18/11 $15.00 

interactions with other processes, and 
determine changes in a system’s con-
figuration. By listing metrics and error 
messages, logs can reveal a sickly ap-
plication (such as one with unusually 
high latency or memory use) or expose 
one that fails due to insufficient privi-
leges. Such things can help program-
mers pinpoint a specific application 
as a contributing factor in a more com-
plex failure. 

Virtualization and system simula-
tors. One family of technologies that 
can help debug software running 
on hardware that does not match a 
given development environment in-
cludes virtual machines, emulators, 
and system simulators. With virtual 
machines and operating system vir-
tualization systems (such as Docker), 
software development teams can cre-
ate a single environment that can be 
used for development, debugging, 
and production deployment. Such 
containers are also useful when a pro-
grammer wants to find and eliminate 
configuration-related errors. More-
over, development environments for 
some commonly used embedded plat-
forms (such as smartphones) come 
with an emulator, allowing program-
mers to experience the capabilities of 
the target hardware from the comfort 
of a desktop. Finally, when a team is 
developing software and hardware to-
gether, a full system simulator (such 
as Simics17) will provide a high-fidelity 
view of the complete platform stack. 

Conclusion 
The number of possible faults in a soft-
ware system can easily challenge the 
limits of human ingenuity. Debugging 
the corresponding failures thus re-
quires an arsenal of tools, techniques, 
methods, and strategies. Here I have 
outlined some I find particularly effec-
tive, but there are many others I con-
sider useful, as well as many special-
ized ones that may work wonders in a 
particular environment. 

Each debugging session represents 
a new venture into the unknown. Pro-
grammers should work systemati-
cally, starting with an approach that 
matches the failure’s characteristics, 
but adapt it quickly as they uncover 
more things about the failure’s prob-
able cause. Programmers should not 
hesitate to switch from Web searching, 




