442 INFORMATION STRUCTURES 2.5

C5. [Add to AVAIL list.] Set SIZE(P —1) ¢ SIZE(PO), LINK(PO) ¢ AVAIL,
LINK(PO 4+ 1) ¢ LOC(AVAIL), LINK(AVAIL +1) ¢ PO, AVAIL ¢ PO,
TAG(PO) ¢ TAG(P — 1) « “=". |

The steps of Algorithm C are straightforward consequences of the storage
layout (7); a slightly longer algorithm that is a little faster appears in exercise 15.
In step C5, AVAIL is an abbreviation for LINK(LOC(AVAIL)), as shown in (g).

C. The “buddy system.” We will now study another approach to dynamic
storage allocation, suitable for use with binary computers. This method uses one
bit of overhead in each block, and it requires all blocks to be of length 1, 2, 4,
8, or 16, etc. If a block is not 2% words long for some integer k, the next higher
power of 2 is chosen and extra unused space is allocated accordingly.

The idea of this method is to keep separate lists of available blocks of each
size 2¥, 0 < k < m. The entire pool of memory space under allocation consists
of 2™ words, which can be assumed to have the addresses 0 through 2™ — 1.
Originally, the entire block of 2™ words is available. Later, when a block of
2% words is desired, and if nothing of this size is available, a larger available
block is split into two equal parts; ultimately, a block of the right size 2% will
appear. When one block splits into two (each of which is half as large as the
original), these two blocks are called buddies. Later when both buddies are
available again, they coalesce back into a single block; thus the process can be
maintained indefinitely, unless we run out of space at some point.

The key fact underlying the practical usefulness of this method is that if we
know the address of a block (the memory location of its first word), and if we
also know the size of that block, we know the address of its buddy. For example,
the buddy of the block of size 16 beginning in binary location 101110010110000
is a block starting in binary location 101110010100000. To see why this must be
true, we first observe that as the algorithm proceeds, the address of a block of
size 2% is a multiple of 2*. In other words, the address in binary notation has at
least k zeros at the right. This observation is easily justified by induction: If it
is true for all blocks of size 2¥+1, it is certainly true when such a block is halved.

Therefore a block of size, say, 32 has an address of the form zz... 200000
(where the z’s represent either 0 or 1); if it is split, the newly formed buddy blocks
have the addresses zz... 00000 and zz...z10000. In general, let buddy(z) =
address of the buddy of the block of size 2% whose address is z; we find that

z 4+ 2%, if z mod 28+ = (;
buddy, () = {a: — 9% if z mod 2¥+1 = 2k, (10)

This function is readily computed with the “exclusive or” instruction (sometimes
called “selective complement” or “add without carry”) usually found on binary
computers; see exercise 28.

The buddy system makes use of a one-bit TAG field in each block:

TAG(P) =0, if the block with address P is reserved; (
TAG(P) =1, if the block with address P is available. 11)

2.5 DYNAMIC STORAGE ALLOCATION 443

Besides this TAG field, which is present in all blocks, available blocks also have
two link fields, LINKF and LINKB, which are the usual forward and backward
links of a doubly linked list; and they also have a KVAL field to specify k& when
their size is 2%. The algorithms below make use of the table locations AVAIL[0],
AVAIL[1], ..., AVAIL[m], which serve respectively as the heads of the lists of
available storage of sizes 1, 2, 4, ..., 2™. These lists are doubly linked, so as
usual the list heads contain two pointers (see Section 2.2.5):

AVAILF[k] = LINKF(LOC(AVAIL[K])) = link to rear of AVAIL[] list; (12)
AVAILB[k] = LINKB(LOC(AVAIL[k])) = link to front of AVAIL[k] list.

Initially, before any storage has been allocated, we have

AVAILF[m] = AVAILB[m] =0,
LINKF(0) = LINKB(0) = LOC(AVAIL[m]), (13)
TAG(0) =1, KVAL(0) = m

(indicating a single available block of length 2™, beginning in location 0), and
AVAILF (k] = AVAILB[k] = LOC(AVAIL[K]), forO<k<m (14)

(indicating empty lists for available blocks of lengths 2* for all k& < m).

From this description of the buddy system, the reader may find it enjoyable
to design the necessary algorithms for reserving and freeing storage areas before
looking at the algorithms given below. Notice the comparative ease with which
blocks can be halved in the reservation algorithm.

Algorithm R (Buddy system reservation). This algorithm finds and reserves
a block of 2% locations, or reports failure, using the organization of the buddy
system as explained above.

R1. [Find block.] Let j be the smallest integer in the range ¥ < j < m for
which AVAILF[j]1 # LOC(AVAIL[4]), that is, for which the list of available
blocks of size 27 is not empty. If no such j exists, the algorithm terminates
unsuccessfully, since there are no known available blocks of sufficient size to-
meet the request.

R2. [Remove from list.] Set L < AVAILF[j1, P + LINKF(L), AVAILF[j] ¢« P,
LINKB(P) + LOC(AVAIL[j1), and TAG(L) « O.

R3. [Split required?] If j = k, the algorithm terminates (we have found and
reserved an available block starting at address L).

Rd. [Split.] Decrease j by 1. Then set P + L 4 27, TAG(P) 1, KVAL(P) « 7,
LINKF (P) ¢ LINKB(P) + LOC(AVAIL[j1), AVAILF[j] 4 AVAILB[j] «+ P.
(This splits a large block and enters the unused half in the AVAIL[j] list,
which was empty.) Go back to step R3. |

Algorithm S (Buddy system liberation). This algorithm returns a block of 2*
locations, starting in address L, to free storage, using the organization of the
buddy system as explained above.

444 INFORMATION STRUCTURES 2.5

S1. [Is buddy available?] Set P ¢ buddyx(L). (See Eq. (10).) If k = m or if
TAG(P) =0, or if TAG(P) =1 and KVAL(P) # k, go to S3.

S2. [Combine with buddy.] Set
LINKF(LINKB(P)) « LINKF(P), LINKB(LINKF(P)) ¢ LINKB(P).

(This removes block P-from the AVAIL[k] list.) Then set k + k+1, and if
P < L set L ¢ P. Return to S1.

S3. [Put on list.] Set TAG(L) ¢~ 1, P+ AVAILF[k], LINKF(L) + P, LINKB(P) «+ L,
KVAL(L) «+ k, LINKB(L) ¢+ LOC(AVAIL[k]), AVAILF[k] + L. (This puts
block L on the AVAIL[K] list.) 1

D. Comparison of the methods. The mathematical analysis of these dynamic
storage-allocation algorithms has proved to be quite difficult, but there is one
interesting phenomenon that is fairly easy to analyze, namely the “fifty-percent
rule”:

If Algorithms A and B are used continually in such a way that the system
tends to an equilibrium condition, where there are N reserved blocks in
the system, on the average, each equally likely to be the next one deleted,
and where the quantity K in Algorithm A takes on nonzero values (or, more
generally, values > ¢ as in step A4') with probability p, then the average
number of available blocks tends to approximately %pN .
This rule tells us approximately how long the AVAIL list will be. When the
quantity p is near 1 — this will happen if ¢ is very small and if the block sizes are
infrequently equal to each other —we have about half as many available blocks
as unavailable ones; hence the name “fifty-percent rule.”
It is not hard to derive this rule. Consider the following memory map:

A B C CB A B B BCB B
B s R B

This shows the reserved blocks divided into three categories:

A: when freed, the number of available blocks will decrease by one;
B: when freed, the number of available blocks will not change;
C': when freed, the number of available blocks will increase by one.

Now let N be the number of reserved blocks, and let M be the number of
available ones; let A, B, and C be the number of blocks of the types identified
above. We have
N=A+B+C (15)
1
M=102A+B+e >

where € = 0, 1, or 2 depending on conditions at the lower and upper boundaries.

Let us assume that N is essentially constant, but that A, B, C, and € are
random quantities that reach a stationary distribution after a block is freed and a
(slightly different) stationary distribution after a block is allocated. The average
change in M when a block is freed is the average value of (C' — A)/N; the average
change in M when a block is allocated is 1 — p. So the equilibrium assumption

